Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > EU scientists aim to break storage capacity barrier

Abstract:
Our ability to store huge volumes of documents, photos, videos and music on our computers and other gadgets is a result of enormous strides in technology over the years. Scientists from the EU-funded TERAMAGSTOR ('Terabit magnetic storage technologies') project are now aiming to push the boundaries even further with a hard disk that has the storage density capacity of one terabit per square inch (1 Tbit/in2).

EU scientists aim to break storage capacity barrier

EU | Posted on July 7th, 2010

The project has been funded EUR 3.45 million by the 'Information and communication technologies' (ICT) Theme of the EU's Seventh Framework Programme (FP7).

To develop their concept, the researchers used tiny magnetised nanospheres, which at 25 nanometres in diameter, are larger than traditional grains but smaller than typical storage cells. According to the team, the benefit of using these nanospheres is that they self-assemble into a regular array, which has the potential to keep costs low.

The nanospheres were then blended with an alcohol-based solution that was placed onto the substrate. To make sure the particles were held into place, the scientists then added a magnetic film (an iron-platinum alloy that has attracted considerable industry interest) on top of the surface to form a kind of magnetic 'cap'. This cap effectively acts as a magnet (with a north and south pole), and the array can be used as a storage device.

Since spheres that are separated by 25 nanometres are equivalent to storage density of 1 terabit (1,000 gigabits) per square inch, the MAFIN team believes that the same approach with smaller spheres could produce densities that are up to 6 times greater.

Beyond the recording medium itself, the researchers also investigated recording techniques (they discovered that adjustments will need to be made to the iron-platinum so that information can be easily recorded and read) and experimented with using a magnetic-tip probe (as a replacement to the conventional recording head) to magnetise and read each of the nanospheres.

TERAMAGSTOR is the successor of the original MAFIN ('Magnetic films on nanospheres: innovative concept for storage media') project, which was funded EUR 1.3 million by the 'Information society technologies' (IST) Thematic Area of the EU's Sixth Framework Programme (FP6).

Unlike today's hard disks that record information on a ferromagnetic layer made up of grains, the objective of MAFIN was to develop a completely new magnetic recording medium for ultrahigh-density magnetic storage applications.

TERAMAGSTOR has now picked up on the results of the proof-of-concept project to design, fabricate and test future perpendicular magnetic storage media with areal density (the density of a two-dimensional object) larger than 1 Tbit/in2.

Chemists, physicists, engineers, and materials scientists from nine European institutes began work on TERAMAGSTOR in 2008, which is headed by Demokritos, the National Centre for Scientific Research in Greece. The team's approach is based on the development of advanced film media using techniques from nanotechnology, one of the key manufacturing technologies of the 21st century.

Under MAFIN, the aim was to build a recording surface comprised of purpose-made magnetic cells, and to produce these nanostructures both inexpensively and on a large scale. The three-year TERAMAGSTOR project will conclude in April 2011.

For more information, please visit:

TERAMAGSTOR: www.teramagstor.eu/

MAFIN: idefix.physik.uni-konstanz.de/MAFIN/

ICT Results: cordis.europa.eu/ictresults/index.cfm

####

For more information, please click here

Copyright © CORDIS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project