Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > EU scientists aim to break storage capacity barrier

Abstract:
Our ability to store huge volumes of documents, photos, videos and music on our computers and other gadgets is a result of enormous strides in technology over the years. Scientists from the EU-funded TERAMAGSTOR ('Terabit magnetic storage technologies') project are now aiming to push the boundaries even further with a hard disk that has the storage density capacity of one terabit per square inch (1 Tbit/in2).

EU scientists aim to break storage capacity barrier

EU | Posted on July 7th, 2010

The project has been funded EUR 3.45 million by the 'Information and communication technologies' (ICT) Theme of the EU's Seventh Framework Programme (FP7).

To develop their concept, the researchers used tiny magnetised nanospheres, which at 25 nanometres in diameter, are larger than traditional grains but smaller than typical storage cells. According to the team, the benefit of using these nanospheres is that they self-assemble into a regular array, which has the potential to keep costs low.

The nanospheres were then blended with an alcohol-based solution that was placed onto the substrate. To make sure the particles were held into place, the scientists then added a magnetic film (an iron-platinum alloy that has attracted considerable industry interest) on top of the surface to form a kind of magnetic 'cap'. This cap effectively acts as a magnet (with a north and south pole), and the array can be used as a storage device.

Since spheres that are separated by 25 nanometres are equivalent to storage density of 1 terabit (1,000 gigabits) per square inch, the MAFIN team believes that the same approach with smaller spheres could produce densities that are up to 6 times greater.

Beyond the recording medium itself, the researchers also investigated recording techniques (they discovered that adjustments will need to be made to the iron-platinum so that information can be easily recorded and read) and experimented with using a magnetic-tip probe (as a replacement to the conventional recording head) to magnetise and read each of the nanospheres.

TERAMAGSTOR is the successor of the original MAFIN ('Magnetic films on nanospheres: innovative concept for storage media') project, which was funded EUR 1.3 million by the 'Information society technologies' (IST) Thematic Area of the EU's Sixth Framework Programme (FP6).

Unlike today's hard disks that record information on a ferromagnetic layer made up of grains, the objective of MAFIN was to develop a completely new magnetic recording medium for ultrahigh-density magnetic storage applications.

TERAMAGSTOR has now picked up on the results of the proof-of-concept project to design, fabricate and test future perpendicular magnetic storage media with areal density (the density of a two-dimensional object) larger than 1 Tbit/in2.

Chemists, physicists, engineers, and materials scientists from nine European institutes began work on TERAMAGSTOR in 2008, which is headed by Demokritos, the National Centre for Scientific Research in Greece. The team's approach is based on the development of advanced film media using techniques from nanotechnology, one of the key manufacturing technologies of the 21st century.

Under MAFIN, the aim was to build a recording surface comprised of purpose-made magnetic cells, and to produce these nanostructures both inexpensively and on a large scale. The three-year TERAMAGSTOR project will conclude in April 2011.

For more information, please visit:

TERAMAGSTOR: www.teramagstor.eu/

MAFIN: idefix.physik.uni-konstanz.de/MAFIN/

ICT Results: cordis.europa.eu/ictresults/index.cfm

####

For more information, please click here

Copyright © CORDIS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Memory Technology

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Research partnerships

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project