Home > Press > Graphene and DNA team up to sense trouble
![]() |
An illustration of how fluorescent-tagged DNA interacts with functionalized graphene. Both single-stranded DNA (A) and double-stranded DNA (B) are adsorbed onto a graphene surface, but the interaction is stronger with ssDNA, causing the fluorescence on the ssDNA to darken more. C) A complementary DNA nears the ssDNA and causes the adsorbed ssDNA to detach from the graphene surface. D) DNA adsorbed onto graphene is protected from being broken down. |
Abstract:
Just as in formulaic geek-tough guy buddy movies, nobody was convinced that delicate single-stranded DNA could work with graphene, a tough nanomaterial made of sheets of carbon atoms.
However, scientists at DOE's Pacific Northwest National Laboratory and Princeton University believed the two would make a great team for detecting diseases using blood, saliva, and other biological fluids. And, just like in the movies, DNA and graphene really get the job done. Through a series of studies at DOE's EMSL, the team found that the single-stranded DNA picks out biomolecules that indicate disease with a high degree of specificity. The graphene protects the DNA from being broken down by enzymes while it works. This research could lead to stable biosensors that are more accurate than conventional sensors and for application in gene therapy. PNNL's Transformational Materials Science Initiative funded this study.
####
For more information, please click here
Contacts:
Kristin Manke
509.372.6011
Copyright © DOE Pulse
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanomedicine
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Nanobiotechnology
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |