Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Build it Like Mother Nature

In a step toward creating adhesives, drug delivery systems and other useful tools, Wyss Institute researchers led by Joanna Aizenberg have synthesized nanobristles that self-assemble into helical shapes,which are ubiquitous in nature.
In a step toward creating adhesives, drug delivery systems and other useful tools, Wyss Institute researchers led by Joanna Aizenberg have synthesized nanobristles that self-assemble into helical shapes,which are ubiquitous in nature.

Abstract:
Frank Lloyd Wright knew nature could teach architects a thing or two. Inspired by the contours of the landscape, Wright designed buildings with organic forms. With a similar philosophy, researchers are charting a new course in medicine through the Wyss Institute for Biologically Inspired Engineering, launched in 2009 with the largest philanthropic gift to Harvard in the University's history -- $125 million -- from engineer-entrepreneur Hansjorg Wyss.

Build it Like Mother Nature

Cambridge, MA | Posted on June 22nd, 2010

The Institute brings together researchers and clinicians from Harvard's Medical School and School of Engineering and Applied Sciences (SEAS), its affiliated hospitals and nearby institutions, and provides them with funding, space, and expert technical assistance to build on revolutionary advances in engineering, nanotechnology, synthetic biology, and computer science. Although their ideas carry a high risk of failure, they also have the potential to yield big dividends for human health.

"We're adopting the same simple, ingenious design principles that nature uses to create new medical devices and biomaterials," says Donald Ingber, the Institute's founding director and an HMS professor of pathology at Children's Hospital Boston.

Wyss teams discard stale patterns of thought by embracing strategies living systems use to adapt and compete for survival. Some of these tactics run counter to what scientists and engineers learn during their formal training. Take nature's approach to noise.

"Nature harnesses noise instead of trying to minimize it," says Ingber, using natural selection to illustrate his point. Genetic noise -- in the form of random DNA mutations -- produces populations of cells with slightly differing DNA blueprints and traits.

Electrical engineers despise noise and strive to eliminate it from equipment, from radio transmitters to lasers. Wyss researchers recognize that the human body bears little resemblance to a cool, quiet room for computer servers. This complex multi-cellular organism instead resembles an experimental polyrhythmic symphony in which the musicians work from their own scores, yet are flexible enough to improvise.

Relying on insights from nature may enable Wyss researchers to innovate where others have failed. Take tissue engineering: Instead of working in a petri dish, a team led by Ingber etched three-dimensional channels into a flexible, translucent cube and filled them with cells to recreate key structures found in the lung. The resulting "lung on a chip" expands and contracts rhythmically. It breathes. "We could never have achieved this necessary level of complexity in a dish," Ingber says. He hopes this and other tiny organ surrogates will provide an alternative to animal models. "We're not interested in making incremental improvements to existing materials and devices," he declares. "We're trying to shift paradigms."

Another Wyss team is developing an assistive device for children with cerebral palsy and other forms of brain injury that isn't stiff and awkward like a leg brace but instead is as soft and lightweight as clothing.

With seed funding from the Wyss, Eugene Goldfield, an HMS assistant professor of psychology at Children's Hospital Boston, is designing a programmable "second skin" to re-educate an injured nervous system. The skin will be made of many tiny "smart agents" that sense movement and then collaborate with patients' leg muscles to help them move.

"Without prompting from Don Ingber, I probably would have fumbled along on my own for a long time," says Goldfield. "Don realized it was important for me to connect with robotics experts, so he showed up one day and offered me a ride over to the School of Engineering and Applied Sciences." There, Goldfield met SEAS Associate Professor of Computer Science Radhika Nagpal, who is interested in robotic systems that adapt like living systems. Her group has created a self-balancing table composed of 12 identical robots that cooperate without guidance from a leader, responding to disturbances to keep the table level.

For help in mimicking nature's principle of self-organization, Nagpal and Goldfield turned to Harvard Microrobotics Laboratory founder and SEAS professor Robert Wood. Wood brings to the project new force-generating lightweight materials that he uses to make insect robots fly.

"We need each other desperately," says Nagpal of the trio's shared vision, which has drawn them out of their comfort zones. That is, after all, what the Wyss Institute is about: moving bold ideas through a discovery phase to the point where they capture interest -- and funding -- from government or industry.

####

About Wyss Institute for Biologically Inspired Engineering
The Wyss Institute for Biologically Inspired Engineering at Harvard University (http://wyss.harvard.edu) uses nature’s design principles to create breakthrough technologies that will revolutionize medicine, industry and the environment. Working as an alliance among Harvard’s Medical School, School of Engineering and Applied Sciences, and Faculty of Arts and Sciences, and in partnership with Beth Israel Deaconess Medical Center, Children’s Hospital Boston, Dana-Farber Cancer Institute, University of Massachusetts Medical School and Boston University, the Institute crosses disciplinary and institutional barriers to engage in high-risk, fundamental research that leads to transformative change. By applying biological principles, Wyss researchers are developing innovative new engineering solutions for healthcare, manufacturing, robotics, energy and sustainable architecture. These technologies are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances and new startups.

For more information, please click here

Copyright © Wyss Institute for Biologically Inspired Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Synthetic Biology

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Seattle Hub for Synthetic Biology launched by Allen Institute, Chan Zuckerberg Initiative, and the University of Washington will turn cells into recording devices to unlock secrets of disease: First-of-its-kind research initiative will develop technologies to reveal how changes i December 8th, 2023

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project