Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Towards nanowire solar cells with a 65-percent efficiency

Abstract:
TU/e researchers want to develop solar cells with an efficiency of over 65 percent by means of nanotechnology. In Southern Europe and North Africa these new solar cells can generate a substantial portion of the European demand for electricity. The Dutch government reserves EUR 1.2 million for the research.

Towards nanowire solar cells with a 65-percent efficiency

The Netherlands | Posted on June 17th, 2010

An agency of the Ministry of Economic Affairs, will grant the EUR 1.2 million to researchers dr. Jos Haverkort, dr. Erik Bakkers en dr. ir. Geert Verbong for their research into nanowire solar cells. It is their expectation that, when combined with mirror systems, these solar cells can generate a sizeable portion of the European electricity demand in Southern Europe and North Africa.

The current thin-film solar cells (type III/V) have an efficiency that lies around 40 percent, but they are very expensive and can only be applied as solar panels on satellites. By using mirror systems that focus one thousand times they can now also be deployed on earth in a cost-effective manner. The TU/ researchers expect that in ten years their nano-structured solar cells can attain an efficiency of more than 65 percent. Jos Haverkort: "If the Netherlands wants to timely participate in a commercial exploitation of nanowire solar cells, there is a great urgency to get on board now." The research is conducted together with Philips MiPlaza.

They think that nanotechnology, in combination with the use of concentrated sunlight through mirror systems, has the potential to lead to the world's most efficient solar cell system with a cost price lower than 50 cent per Watt peak. In comparison: for the present generation of solar cells that cost price is 1.50 euro per Watt peak.

Stacking

Nanowires make it possible to stack a number of subcells (junctions). In this process each subcell converts one color of sunlight optimally to electricity. The highest yield reported until now in a nanowire solar cell is 8.4 percent. Haverkort: "We expect that a protective shell around the nanowires is the critical step towards attaining the same efficiency with nanowire solar cells as with thin-film cells." Haverkort thinks that at 5 to 10 junctions he will arrive at an efficiency of 65 percent.

Scarcity of raw materials

In addition, the researchers expect considerable savings can be made on production costs, because nanowires grow on a cheap silicon substrate and also grow faster, which results in a lower cost of ownership of the growth equipment. What is more, the combination of the mirror systems with nanotechnology will imply an acceptable use of the scarce and hence expensive metals gallium and indium.

####

For more information, please click here

Copyright © Technische Universiteit Eindhoven

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Energy

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Solar/Photovoltaic

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project