Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Photonic Structures Fabrication in LiNbO3 Crystals using the System100 ICP180

Grating etched into LiNbO3 planar waveguides. The etched air gap width is 388 nm and depth is about 800nm
Grating etched into LiNbO3 planar waveguides. The etched air gap width is 388 nm and depth is about 800nm

Abstract:
Siyuan Yu, Professor in Photonics and Optical Communications
Department of Electrical & Electronic Engineering, University of Bristol

Photonic Structures Fabrication in LiNbO3 Crystals using the System100 ICP180

UK | Posted on June 14th, 2010

The Photonics Group at the University of Bristol have used their OIPT System100 RIE100 ICP180 system to develop a high speed, high quality process for etching sub-micron features in Lithium Niobate (LiNbO3) and related materials. This work was motivated by the need to produce high aspect ratio, highly vertical features, such as photonic crystals, in LiNbO3.

LiNbO3 is a hard material to etch. Previously reported etch processes had limited dry etch rate of ~20 nm/min. Such slow etch rate was also typically associated with low selectivity over mask materials. Although the slow etch processes may be able to etch waveguides that does not require very vertical profiles, they require a long etch time. More importantly, they cannot be used to achieve photonic features with sizes approaching 100nm and requiring very smooth and vertical sidewall profiles to optimise their optical performance.

The Bristol group developed an optimised SF6-based chemistry on the RIE100/ICP180 system. The high density ICP plasma source enables etch rates of up to 200 nm/min, with vertical and smooth sidewalls. Ridge waveguides, gratings (Figure 1), and photonic crystals (Figure 2) have been successfully etched into LiNbO3 planar waveguide layers produced by proto exchange and by epitaxial growth on Lithium Tantalate (LiTaO3) substrates. Depths of up to 0.8 micron have been achieved with feature sizes of less than 200 nm.

The Bristol group have also been able to pattern the LiTaO3 substrate using such etching processes before the epitaxial growth of the LiNbO3 layer at Prof Pam Thomas' group in the Physics Department, Warwick University, who successfully produced buried photonic structures in these crystals.

####

For more information, please click here

Contacts:
Prof. Siyuan Yu.

Copyright © Oxford Instruments

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project