Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Answer to saliva mystery has practical impact

Stretching a moistened material contained in a strip on the leading edge of disposable razors demonstrates a long-mysterious phenomenon that causes some fluids to form beads while others do not. Whereas beads form when a bit of saliva is stretched, they do not form when the material on the razor strip is stretched. Researchers have learned why the beading occurs, which could help improve industrial processes and for administering drugs in "personalized medicine." (Gareth H. McKinley/MIT)
Stretching a moistened material contained in a strip on the leading edge of disposable razors demonstrates a long-mysterious phenomenon that causes some fluids to form beads while others do not. Whereas beads form when a bit of saliva is stretched, they do not form when the material on the razor strip is stretched. Researchers have learned why the beading occurs, which could help improve industrial processes and for administering drugs in "personalized medicine." (Gareth H. McKinley/MIT)

Abstract:
Bead formation model could be boon for plastics, pharmaceuticals

Answer to saliva mystery has practical impact

Houston, TX | Posted on June 11th, 2010

Researchers at Rice University, Purdue University and the Massachusetts Institute of Technology have solved a long-standing mystery about why some fluids containing polymers -- including saliva -- form beads when they are stretched and others do not.

The findings are published online this week in the journal Nature Physics.

Study co-author Matteo Pasquali, professor in chemical and biomolecular engineering at Rice, said the study answers fundamental scientific questions and could ultimately lead to improvements as diverse as ink-jet printing, nanomaterial fiber spinning and drug dispensers for "personalized medicine."

Co-author Osman Basaran, Purdue's Burton and Kathryn Gedge Professor of Chemical Engineering, said, "Any kindergartner is familiar with this beading phenomenon, which you can demonstrate by stretching a glob of saliva between your thumb and forefinger. The question is, 'Why does this beading take place only in some fluids containing polymers but not others?'"

Pasquali said, "In answering the question about why some fluids do this and others do not, we are addressing everyday processes that apply to fiber and droplet formation, not just in multibillion-dollar industrial plants but also in fluids produced in living cells."

Saliva and other complex "viscoelastic" fluids like shaving cream and shampoo contain long molecules called polymers. When a strand of viscoelastic fluid is stretched, these polymers can cause a line of beads to form just before the strand breaks.

Pasquali said the explanation for why some viscoelastic fluids form beads and others do not was decades in the making. The origins of the work can be traced to Pasquali's and Basaran's doctoral research adviser, L.E. "Skip" Scriven of the University of Minnesota. Pasquali said Scriven worked out the basics of the competition between capillary, inertial and viscous forces in flows during the 1970s and 1980s. In the mid-1990s, during his doctoral research at Minnesota, Pasquali expanded on Scriven's earlier work to include the effects of viscoelasticity, which originates in liquid microstructures and nanostructures. Finally, Pasquali's former doctoral student, Pradeep Bhat, the lead author of the new study, took up the mantle nine years ago as a Ph.D. student in Pasquali's lab and continued working on the problem for the past three years as a postdoctoral researcher in Basaran's lab at Purdue.

Bhat, Basaran and Pasquali found that a key factor in the beading mechanism is fluid inertia, or the tendency of a fluid to keep moving unless acted upon by an external force.

Other major elements are a fluid's viscosity; the time it takes a stretched polymer molecule to "relax," or snap back to its original shape when stretching is stopped; and the "capillary time," or how long it would take for the surface of the fluid strand to vibrate if plucked.

"It turns out that the inertia has to be large enough and the relaxation time has to be small enough to form beads," Bhat said.

The researchers discovered that bead formation depends on two ratios: the viscous force compared with inertial force and the relaxation time compared with the capillary time.

Additional co-authors include Purdue graduate student Santosh Appathurai; Michael Harris, professor of chemical engineering at Purdue; and Gareth McKinley, professor of mechanical engineering at MIT.

####

About Rice University
Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,279 undergraduates and 2,277 graduate students; selectivity -- 12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.

For more information, please click here

Contacts:
Jade Boyd
Associate Director and Science Editor
Office of Public Affairs/News & Media Relations
Rice University
(office) 713-348-6778
(cell) 713-302-2447

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project