Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Liposome-Hydrogel Hybrids: No Toil, No Trouble for Stronger Bubbles

Schematic depicting the creation of liposome-hydrogel hybrids. A solution containing phospholipid (“liposome precursor”) mixes with a solution containing hydrogel precursor (a). Blending together at the interface of the two channels, the phospholipid forms liposomes (b) that trap the hydrogel precursor inside. Material outside the vesicles is removed (c) and the liposomes are UV irradiated. This polymerizes the protein chains in the hydrogel and yields a liposome-hydrogel hybrid (d). Credit: NIST
Schematic depicting the creation of liposome-hydrogel hybrids. A solution containing phospholipid (“liposome precursor”) mixes with a solution containing hydrogel precursor (a). Blending together at the interface of the two channels, the phospholipid forms liposomes (b) that trap the hydrogel precursor inside. Material outside the vesicles is removed (c) and the liposomes are UV irradiated. This polymerizes the protein chains in the hydrogel and yields a liposome-hydrogel hybrid (d). Credit: NIST

Abstract:
People have been combining materials to bring forth the best properties of both ever since copper and tin were merged to start the Bronze Age. In the latest successful merger, researchers at the National Institute of Standards and Technology (NIST), the University of Maryland (UM) and the U.S. Food and Drug Administration (FDA) have developed a method to combine two substances that individually have generated interest for their potential biomedical applications: a phospholipid membrane "bubble" called a liposome and particles of hydrogel, a water-filled network of polymer chains. The combination forms a hybrid nanoscale (billionth of a meter) particle that may one day travel directly to specific cells such as tumors, pass easily though the target's cell membrane, and then slowly release a drug payload.

Liposome-Hydrogel Hybrids: No Toil, No Trouble for Stronger Bubbles

Washington, DC | Posted on June 10th, 2010

In a recent paper in the journal Langmuir*, the research team reviewed how liposomes and hydrogel nanoparticles have individual advantages and disadvantages for drug delivery. While liposomes have useful surface properties that allow them to target specific cells and pass through membranes, they can rupture if the surrounding environment changes. Hydrogel nanoparticles are more stable and possess controlled release capabilities to tune the dosage of a drug over time, but are prone to degradation and clumping. The researchers' goal was to engineer nanoparticles incorporating both components to utilize the strengths of each material while compensating for their weaknesses.

To manufacture their liposome-hydrogel hybrid vesicles, the researchers adapted a NIST-UM technique known as COMMAND for COntrolled Microfluidic Mixing And Nanoparticle Determination that uses a microscopic fluidic (microfluidic) device (see "NIST, Maryland Researchers COMMAND a Better Class of Liposomes" in NIST Tech Beat, April 27, 2010 **). In the new work, phospholipid molecules are dissolved in isopropyl alcohol and fed via a tiny (21 micrometers in diameter, or three times the size of a yeast cell) inlet channel into a "mixer" channel, then "focused" into a fluid jet by a water-based solution added through two side channels. Hydrogel precursor molecules are mixed in with the focusing fluid.

As the components blend together at the interfaces of the fluid streams, the phospholipid molecules self-assemble into nanoscale vesicles of controlled size and trap the monomers in solution inside. The newly formed vesicles then are irradiated with ultraviolet light to polymerize the hydrogel precursors they carry into a solid gel made up of cross-linked chains. These chains give strength to the vesicles while permitting them to retain the spherical shape of the liposome envelope (which, in turn, would facilitate passage through a cell membrane).

To turn the liposome-hydrogel hybrid vesicles into cellular delivery vehicles, a drug or other cargo would be added to the focusing fluid during production.

* J.S. Hong, S.M. Stavis, S.H. DePaoli Lacerda, L.E. Locascio, S.R. Raghavan and M. Gaitan. Microfluidic directed self-assembly of liposome-hydrogel hybrid nanoparticles. Langmuir, published online April 29, 2010.

** www.nist.gov/eeel/semiconductor/command_042710.cfm

####

For more information, please click here

Contacts:
Media Contact:
Michael E. Newman

(301) 975-3025

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project