Home > Press > Gravity-like theories give insight into the strong force
Abstract:
A new computation of the constant that describes the strength of the force between the quarks in a proton may help theorists tackle one of the most challenging problems of physics: analytically solving the theory of QCD and determining its coupling strength at large distances.
Quantum Chromodynamics is the theory of the strong force, describing how quarks combine to make the protons and neutrons in the nucleus of the atom. While the strong force strength is known to be weak at small separation between quarks, its value and behavior at large distances is uncertain and hotly debated.
To tackle that problem, three scientists, including one based at DOE's Jefferson Lab, computed the constant that describes the strength of the force between the quarks in a proton. They computed the constant using a novel approach: the Maldacena conjecture, a method that connects QCD-like theories in physical space to gravity-like theories in a mathematical five-dimensional space.
The calculation showed that the Maldacena conjecture provides an analytical way to solve QCD. Their analysis also clarifies why different earlier calculations have yielded different values for the constant, thus giving new insights into how to consistently define strong force coupling, as well as providing new non-trivial tests of QCD. A paper describing the result was published on May 28 in the journal Physical Review D (prd.aps.org/abstract/PRD/v81/i9/e096010)
####
For more information, please click here
Contacts:
Kandice Carter
757.269.7263
Copyright © Jefferson Lab
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Physics
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Quantum nanoscience
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Programmable electron-induced color router array May 14th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |