Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists Decipher Structure of Nature’s ‘Light Switch’

Left: The newly derived 3D map of a bacterial phytochrome dimer, produced using cryo electron microscopy. Right: By fitting x-ray crystal structures of several homologous fragments into this map, scientists have created an atomic model of the whole structure. The two monomers making up the complete structure — one shown as a “ribbon” diagram, the other using a space-filling display — dimerize in parallel with the two polypeptides intimately twisting around each other.
Left: The newly derived 3D map of a bacterial phytochrome dimer, produced using cryo electron microscopy. Right: By fitting x-ray crystal structures of several homologous fragments into this map, scientists have created an atomic model of the whole structure. The two monomers making up the complete structure — one shown as a “ribbon” diagram, the other using a space-filling display — dimerize in parallel with the two polypeptides intimately twisting around each other.

Abstract:
New findings will help scientists understand how plants respond to light

Scientists Decipher Structure of Nature’s ‘Light Switch’

Upton, NY | Posted on June 2nd, 2010

When the first warm rays of springtime sunshine trigger a burst of new plant growth, it's almost as if someone flicked a switch to turn on the greenery and unleash a floral profusion of color. Opening a window into this process, scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and collaborators at the University of Wisconsin, Madison, have deciphered the structure of a molecular "switch" much like the one plants use to sense light. Their findings, described online in the Proceedings of the National Academy of Sciences the week of May 31, 2010, help explain how the switch works and could be used to design new ways to modify plant growth.

Previous studies showed that the light-sensing structure, called a phytochrome, exists in two stable states. Each state is sensitive to a slightly different wavelength, or color, of light — from red to "far red," which is close to the invisible infrared end of the light spectrum. As the phytochrome absorbs photons of one wavelength or the other, it changes shape and sends signals that help plants know when to flower, produce chlorophyll, and grow.

"The phytochrome is almost like nature's light switch," said Brookhaven biophysicist Huilin Li, who is also an associate professor at Stony Brook University and a lead author on the study. "Finding out how this switch is flipped on or off by a signal as subtle as a single photon of light is fascinating."

As with all biological molecules, one key to the phytochrome's function is its structure. But scientists trying to get a molecular-level picture of a phytochrome have a formidable challenge: The phytochrome molecule is too dynamic to capture in a single image using techniques like x-ray crystallography. So, scientists have studied only the rigid and smaller pieces of the molecule, yielding detailed, but fragmented, information.

Now using additional imaging and computational techniques, the Brookhaven researchers and their collaborators have pieced together for the first time a detailed structure of a whole phytochrome.

Li and his collaborators studied a phytochrome from a common bacterium that is quite similar in biochemistry and function to those found in plants, but easier to isolate. Plant biologist Richard Vierstra of the University of Wisconsin provided the purified samples.

At Brookhaven, Li's group used two imaging techniques. First, they applied a layer of heavy metal dye to the purified phytochrome molecules to make them more visible, and viewed them using an electron microscope. This produced many two-dimensional images from a variety of angles to give the researchers a rough outline of the phytochrome map.

The scientists also froze the molecules in solution to produce another set of images that would be free of artifacts from the staining technique. For this set of images, the scientists used a cryo-electron microscope.

Using computers to average the data from each technique and then combine the information, the scientists were able to construct a three-dimensional map of the full phytochrome structure. The scientists then fitted the previously determined detailed structures of phytochrome fragments into their newly derived 3-D map to build an atomic model for the whole phytochrome.

Though the scientists knew the phytochrome was composed of two "sister" units, forming a dimer, the new structure revealed a surprisingly long twisted area of contact between the two individual units, with a good deal of flexibility at the untwisted ends. The structure supports the idea that the absorption of light somehow adjusts the strength or orientation of the contact, and through a series of conformation changes, transmits a signal down the length of the molecular interface. The scientists confirmed the proposed structural changes during photo-conversion by mutagenesis and biochemical assay.

The scientists studied only the form of the phytochrome that is sensitive to red light. Next they plan to see how the structure changes after it absorbs red light to become sensitive to "far red" light. Comparing the two structures will help the scientists test their model of how the molecule changes shape to send signals in response to light.

This research was supported by Brookhaven's Laboratory Directed Research and Development program, the National Institutes of Health, the National Science Foundation, and a grant from the University of Wisconsin College of Agricultural and Life Science.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

For more information, please click here

Contacts:
Karen McNulty Walsh
(631) 344-8350

Peter Genzer
(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project