Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > To Attack H1N1, Other Flu Viruses, Gold Nanorods Deliver Potent Payload

These human bronchial epithelial cells have been transfected with nanoplexes, developed by scientists at UB and CDC, that are uniformly distributed surrounding the cell nuclei.
These human bronchial epithelial cells have been transfected with nanoplexes, developed by scientists at UB and CDC, that are uniformly distributed surrounding the cell nuclei.

Abstract:
Joint research by UB and CDC could lead to new generation of antiviral medicines

To Attack H1N1, Other Flu Viruses, Gold Nanorods Deliver Potent Payload

Buffalo, NY | Posted on May 30th, 2010

Future pandemics of seasonal flu, H1N1 and other drug-resistant viruses may be thwarted by a potent, immune-boosting payload that is effectively delivered to cells by gold nanorods, report scientists at the University at Buffalo and the U.S. Centers for Disease Control and Prevention. The work is published in the current issue of the Proceedings of the National Academy of Sciences.

"This joint research by UB and the CDC has the potential to usher in a new generation of antiviral medicines to aggressively treat a broad range of infectious diseases, from H1N1 to avian flu and perhaps Ebola, that are becoming increasingly resistant to the medicines used against them," says UB team leader Paras Prasad, PhD, executive director of the UB Institute for Lasers, Photonics and Biophotonics (ILPB) and SUNY Distinguished Professor in the departments of Chemistry, Physics, Electrical Engineering and Medicine.

The collaborative work between UB and CDC came together through the work of Krishnan Chakravarthy, an MD/PhD candidate at UB and the paper's first author. This research constitutes part of his doctoral degree work that focused on host response to influenza infection and novel drug delivery strategies.

The paper describes the single strand RNA molecule, which prompts a strong immune response against the influenza virus by ramping up the host's cellular production of interferons, proteins that inhibit viral replication.

But, like most RNA molecules, they are unstable when delivered into cells. The gold nanorods produced at UB act as an efficient vehicle to deliver into cells the powerful immune activator molecule.

"It all boils down to how we can deliver the immune activator," says Suryaprakesh Sambhara, DVM, PhD, in CDC's Influenza Division and a co-author on the paper. "The UB researchers had an excellent delivery system. Dr. Prasad and his team are well-known for their contributions to nanoparticle delivery systems."

A key advantage is gold's biocompatibility

"The gold nanorods protect the RNA from degrading once inside cells, while allowing for more selected targeting of cells," said co-author Paul R. Knight III, MD, Chakravarthy's thesis advisor; professor of anesthesiology, microbiology and infectious diseases in the UB School of Medicine and Biomedical Sciences; and director of its MD/PhD program.

"This work demonstrates that the modulation of host response is going to be critical to the next generation of anti-viral therapies," Chakravarthy explains. "The novelty of this approach is that most of these kinds of RNA viruses share a common host-response immune pathway; that is what we have targeted with our nanoparticle therapy. By enhancing the host immune response, we avoid the difficulty of ongoing viral resistance generated through mutations."

Diseases that could be effectively targeted with this new approach include any viruses that are susceptible to the innate immune response that type 1 interferons trigger, Prasad notes.

Based on these in vitro results, the UB and CDC researchers are beginning animal studies.

"This collaboration has been extraordinary as two disparate research groups at UB and a third at the CDC have managed to maintain progress toward a common goal: treatment of influenza," says co-author Adela Bonoiu, PhD, UB research assistant professor at ILPB.

Important funding for the UB institute portion of the research was provided by the John R. Oishei Foundation, which helped pave the way for new stimulus funding UB received recently from the National Institutes of Health to further develop this strategy. The goal is to work toward an Investigational New Drug filing with the FDA.

Additional funding was provided by the NIH, the Air Force Office of Scientific Research and the National Vaccine Program Office of the U.S. Department of Health and Human Services.

Co-authors are Earl J. Bergey, PhD, UB research associate professor of chemistry; Hong Ding, PhD, postdoctoral associate, and Rui Hu, formerly a visiting researcher of UB's ILPB, and William Davis, Priya Ranjan, J. Bowzard and Jacqueline M. Katz of the Influenza Division of the CDC.

####

For more information, please click here

Contacts:
Ellen Goldbaum

716-645-4605

Copyright © University at Buffalo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Nanobiotechnology

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Low-cost formulation reduces dose and increases efficacy of drug against worms: Praziquantel, usually administered in large tablets, is the only anthelmintic available on the market. New form of presentation uses nanotechnology and facilitates use by children and pets May 16th, 2025

Research partnerships

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project