Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Tiny particles may help surgeons by marking brain tumors

Jessica Winter
Jessica Winter

Abstract:
Researchers have developed a way to enhance how brain tumors appear in MRI scans and during surgery, making the tumors easier for surgeons to identify and remove.

By Jessica Orwig

Tiny particles may help surgeons by marking brain tumors

Columbus, OH | Posted on April 30th, 2010

Scientists at Ohio State University are experimenting with different nanoparticles that they hope may one day be injected into the blood of patients and help surgeons remove lethal brain tumors known as glioblastomas.

In the journal Nanotechnology, researchers reported that they have manufactured a small particle called a nanocomposite that is both magnetic and fluorescent. These nanocomposites measure less than twenty nanometers in size (a nanometer is one billionth of a meter). One sheet of paper, for example, is about 100,000 nanometers thick.

"Our strategy is combining two particles that contain different properties to make one particle with multiple properties," explained Jessica Winter, assistant professor in chemical and biomolecular engineering and biomedical engineering at Ohio State.

The magnetic nanoparticles emphasize color contrasts within MRIs, allowing doctors to see potential or existing cancerous tumors before surgery. The fluorescent nanoparticles can change the color that the tumor appears in the brain when seen under a special light.

Neurological surgeons could benefit from a multi-functional particle that would allow them to better see the tumor with an MRI before surgery, and then see it physically during surgery, Winter said.

"We're trying to develop a single nanocomposite that's magnetic - so you can do preoperative MRI - and that's fluorescent - so that when neurological surgeons go into surgery, they can shine a light on the tumor and it will glow a specific color such as green, for example. Then, the surgeon can simply remove all of the green," Winter said.

"With traditional magnetic contrasting agents, you'll get an MRI, but you won't see anything during surgery," she added.

Winter's study provided convincing proof that a particle with dual properties can be formed. However, these multi-functional particles can't be used for animal or human testing because the fluorescent particle, cadmium telluride, is toxic.

"We're currently working on an alternative fluorescent particle which is composed of carbon. This will eliminate the complications that arise with ingesting the cadmium telluride particles," Winter said.

Patients with a specific form of deadly brain tumor, glioblastoma, could benefit from Winter's work. Glioblastomas are usually located in the temporal, or frontal lobe of the brain, and tumors located there are difficult to see and remove.

Combining the two particles could provide doctors with help both before and during the surgery to remove a brain tumor, Winter said.

One of the successes in creating the new nanocomposite particle was how they did it, Winter said. It is normally difficult to combine particles like these, a process known as doping.

The Ohio State researchers pursued an approach which had not been attempted before. They chose to bind their fluorescent particle on top of their magnetic particle at extremely high temperatures.

The key is that our synthesis is done at pretty high temperatures - about 350 degrees Celsius (around 660 degrees Fahrenheit)," Winter explained. "The synthesis was unexpected, but cool at the same time, and we were excited when we saw what we got."

The primary neurological surgeon that collaborates with Winter and her team, an assistant professor with the Department of Neurological Surgery, Atom Sarkar, hopes to test the approach on animals at some point. But first they have to produce a particle that contains no toxic ingredients. If results continue to be encouraging, Winter is optimistic that similar multifunctional particles could become an innovative part of neurological surgery within the next five years.

Others involved with Winter on this research were two of her post doctoral students, Shuang Deng and Gang Ruan, and one of her graduate students, Ning Han. Shuang has recently left and now holds a faculty position in China.

The researchers received funding from the National Science Foundation.

####

For more information, please click here

Contacts:
Jessica Winter

614-292-3769

Media Contact
Pam Frost Gorder
(614) 292-9475

Copyright © Ohio State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project