Home > Press > Junctionless transistor outperforms nanowire MOSFET
![]() |
Schematic representation of the cylindrical wrap-around gate nanowire |
Abstract:
The nanowire pinch-off field effect transistor (FET) or junctionless transistor is a uniformly doped nanowire without junctions with a wrap-around gate. The idea and basic working principle of the nanowire pinch-off transistor were developed in imec and already reported in 2007 and 2008. Recent modeling results obtained in imec for a GaAs and Si nanowire indicate that the nanowire pinch-off FET can outperform the nanowire MOSFET. These results combined with scalability and ease of processing make the junctionless transistor a true competitor for the nanowire MOSFET.
Several years ago, imec theoreticians developed the concept of the pinch-off nanowire FET. Originally, the idea was to avoid surface interactions such as surface roughness scattering or high-k surface phonon scattering wich degrade the charge carrier mobility, by moving the charge carriers away from the interface between the substrate and the insulator. The solution to this problem was to consider a nanowire where source, drain and channel are uniformly doped. For a n-type nanowire pinch-off FET, the charge carriers responsible for the current are delivered by the ionized donors. As the gate voltage is increased, the channel of the wire is depleted and, eventually, pinch-off will occur.
More detailed results about the idea and basic working principle of the nanowire pinch-off FET as proposed by imec can be found in:
[1] Sorée, B.; Magnus, W.; Pourtois, G. Analytical and self-consistent quantum mechanical model for a JFET nanowire. In: IWCE12. 2007. (8-10 October 2007; Amherst, NJ, USA.)
[2] Sorée, B.; Magnus, W.; Pourtois, G. Analytical and self-consistent quantum mechanical model for a surrounding gate MOS nanowire operated in JFET mode. JCEL. Vol. 7: (3) 380-383; 2008.
####
About imec
Imec is Europe’s largest independent research center in nanoelectronics and nano-technology. Its staff of more than 1,750 people includes over 550 industrial residents and guest researchers. Imec’s research is applied in better healthcare, smart electronics, sustainable energy, and safer transport.
For more information, please click here
Copyright © imec
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Chip Technology
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Nanoelectronics
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |