Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > High sensitivity of Zetasizer Nano proves essential for protein aggregation studies at University of South Florida

Abstract:
Dr Martin Muschol, Assistant Professor at the University of South Florida's (USF) Department of Physics and his team are carrying out important research to gain a better understanding of protein aggregation phenomena, including protein crystallization and amyloid fibril growth. Using the Zetasizer Nano ZS, from Malvern Instruments (Malvern, UK), the USF researchers have
been able to perform temperature controlled static and dynamic light scattering (DLS) measurements of protein hydration, protein interactions and aggregation kinetics in vitro.

High sensitivity of Zetasizer Nano proves essential for protein aggregation studies at University of South Florida

Malvern, UK | Posted on April 15th, 2010

"By enabling temperature controlled measurements, the Zetasizer Nano ZS is particularly suited to our work here at USF," said Dr Muschol. "With it we have been able to monitor the effect on the hydration of proteins by salt ions in solution, measuring the hydrodynamic radius of proteins down to plus/minus one tenth the diameter of a water molecule. Interestingly we found that neither chaotropic or cosmotropic salt ions affected overall protein hydration up to salt concentrations of 1M." (ref: ‘Hydration and Hydrodynamic Interactions of Lysozyme: Effects of Chaotropic versus Kosmotropic Ions', Biophysical Journal, Volume 96, pp 3781-3790

Having published several papers in the past year alone, data gathered by Dr Muschol and his team will be used to develop models for protein fibril formation, a behaviour thought to trigger degenerative diseases, such as Alzheimer's disease or Parkinson's disease. "Despite intensive research efforts, we still don't understand how proteins can stay in solution in a crowded cellular environment and what triggers their aggregation and subsequent pathological changes. We hope our research will contribute to resolving these basic puzzles." (ref: ‘Amyloid Protofibrils of Lysozyme Nucleate and Grow Via Oligomer Fusion', Biophysical Journal, Volume 97, pp 590-598)

Dr Muschol's team has also had noticeable success in using the Zetasizer Nano ZS to study the nucleation of gold nanoparticles (ref: R. Jagannathan, et al. J. Phys. Chem. C, 2009, 113, pp3478 3486). Unlike static light measurements commonly used to detect nucleation events, DLS separates out the background scattering from small molecular species in gold sols. Therefore, DLS was able to detect nucleation at a significantly earlier stage than has been possible with other approaches.

The Zetasizer Nano ZS is proving to be the ultimate sizing solution for biotechnology and materials scientists, offering exceptional sensitivity down to sub-micron and nanometre scales. The system's ability to control temperature is important when following the behaviour of polymers and protein samples. Further information can be found at www.malvern.com/zetasizer

Malvern, Malvern Instruments and Zetasizer are registered trademarks of Malvern Instruments Ltd

####

About Malvern Instruments
Malvern Instruments provides a range of complementary materials characterization tools that deliver inter-related measurements reflecting the complexities of particulates and disperse systems, nanomaterials and macromolecules. Analytical instruments from Malvern are used in the characterization of a wide variety of materials, from industrial bulk powders to nanomaterials and delicate macromolecules.

A broad portfolio of innovative technologies is combined with intelligent, user-friendly software. These systems deliver industrially relevant data enabling our customers to make the connection between micro (such as particle size) and macro (bulk) material properties (rheology) and chemical composition (chemical imaging).

Particle size, particle shape, zeta potential, molecular weight, chemical composition and rheological properties measurements are now joined by advanced chromatography solutions (GPC/SEC), extending Malvern’s technologies for protein molecular weight, size and aggregation measurements, and synthetic polymer molecular weight and distribution. The company’s laboratory, at-line, on-line and in-line solutions are proven in sectors as diverse as cement production and pharmaceutical drug discovery.

Headquartered in Malvern, UK, Malvern Instruments has subsidiary organizations in all major European markets, North America, China, Korea and Japan, a joint venture in India, a global distributor network and applications laboratories around the world.

For more information, please click here

Contacts:
For press information, please contact:

Trish Appleton
Kapler Communications
Knowledge Centre
Wyboston Lakes
Great North Road
Wyboston
Bedfordshire
MK44 3BY
UK
Tel: +44 (0)1480 479280
Fax: +44 (0)1480 470343

USA contact:

Marisa Fraser
Malvern Instruments Inc.
117 Flanders Road
Westborough
MA 01581-1042
USA
Tel: +1 508 768 6400
Fax: +1 508 768 6403


Please send sales enquiries to:

Alison Vines
Malvern Instruments Ltd
Enigma Business Park
Grovewood Road
Malvern
Worcestershire
WR14 1XZ
UK
Tel: +44 (0) 1684 892456
Fax: +44 (0) 1684 892789

Copyright © Malvern Instruments

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project