Home > Press > Ultrasensitive imaging method uses gold-silver 'nanocages'
New research findings suggest that an experimental ultrasensitive imaging technique that uses a pulsed laser and tiny metallic "nanocages" might enable both the early detection and treatment of disease. This composite image shows luminous nanocages, which appear like stars against a black background, and a living cell, at upper left. The gold-silver nanocages exhibit a bright "three-photon luminescence" when excited by the ultrafast pulsed laser, with 10-times greater intensity than pure gold or silver nanoparticles. The signal allows live cell imaging with negligible damage from heating. (Purdue University graphic/Ji-Xin Cheng) |
Abstract:
New research findings suggest that an experimental ultrasensitive medical imaging technique that uses a pulsed laser and tiny metallic "nanocages" might enable both the early detection and treatment of disease.
The system works by shining near-infrared laser pulses through the skin to detect hollow nanocages and solid nanoparticles - made of an alloy of gold and silver - that are injected into the bloodstream.
Unlike previous approaches using tiny metallic nanorods and nanospheres, the new technique does not cause heat damage to tissue being imaged. Another advantage is that it does not produce a background "auto fluorescent" glow of surrounding tissues, which interferes with the imaging and reduces contrast and brightness, said Ji-Xin Cheng (pronounced Gee-Shin), an associate professor of biomedical engineering and chemistry at Purdue University.
"This lack of background fluorescence makes the images much more clear and is very important for disease detection," he said. "It allows us to clearly identify the nanocages and the tissues."
The improved performance could make possible early detection and treatment of cancer. The tiny gold-silver cages also might be used to deliver time-released anticancer drugs to diseased tissue, said Younan Xia, the James M. McKelvey Professor for Advanced Materials in the Department of Biomedical Engineering at Washington University in St. Louis. His team fabricated the nanocages and nanoparticles used in the research.
The gold-silver structures yielded images 10 times brighter than other experimental imaging research using gold nanospheres and nanorods. The imaging technology provides brightness and contrast potentially hundreds of times better than conventional fluorescent dyes used for a wide range of biological imaging to study the inner workings of cells and molecules.
Findings were detailed in a research paper published online April 6 in the journal Angewandte Chemie's international edition. The paper was written by Purdue chemistry doctoral student Ling Tong, Washington University graduate student Claire M. Cobley and research assistant professor Jingyi Chen, Xia and Cheng.
The new imaging approach uses a phenomenon called "three-photon luminescence," which provides higher contrast and brighter images than conventional fluorescence imaging methods. Normally, three-photon luminescence is too dim to be used for imaging. However, the presence of gold and silver nanoparticles enhances the brightness, overcoming this obstacle. The ultrafast laser also is thought to possibly play a role by causing "third harmonic generation," which increases the brightness.
Previous research to develop the imaging system has required the use of "plasmons," or clouds of electrons moving in unison, to enhance brightness and contrast. However, using plasmons generates tissue-damaging heat. The new technique does not use plasmon enhancement, eliminating this heating, Cheng said.
The three-photon effect might enable scientists to develop advanced "non-linear optical techniques" that provide better contrast than conventional technologies.
"The three-photon imaging capability will potentially allow us to combine imaging and therapy for better diagnosis and monitoring," Xia said.
Researchers used a laser in the near-infrared range of the spectrum pulsing at the speed of femtoseconds, or quadrillionths of a second. The laser pulses 80 million times per second to illuminate tissues and organs after nanocages have been injected, Cheng said.
The cages and particles are about 40 nanometers wide, or roughly 100 times smaller than a red blood cell.
The researchers intravenously injected the nanocages into mice and then took images of the tiny structures in tissue samples from organs such as the liver and spleen.
The ongoing research is funded by the National Science Foundation and the National Institutes of Health. The research also is affiliated with the Birck Nanotechnology Center and the Bindley Bioscience Center, both in Purdue's Discovery Park.
ABSTRACT
Bright Three-photon Luminescence from Au-Ag Alloyed Nanostructures for Bioimaging with Negligible Photothermal Toxicity
Ling Tong1, Claire M. Cobley2, Jingyi Chen2, Younan Xia2, and Ji-Xin Cheng1
1Department of Chemistry, Purdue University
2Department of Biomedical Engineering, Washington University
We report three-photon luminescence (3PL) from Au-Ag alloyed nanocages and nanoparticles. Excited by a femtosecond laser at 1290 nm, the 3PL was observed in the visible region, with an intensity level higher than that from pure Au or Ag nanoparticles by one order of magnitude. The enhancement was found to be weakly correlated to the hollow and porous structure and might arise from the Au-Ag alloy composition. With the near-infrared laser being completely off the plasmon resonance, the 3PL is not accompanied by photothermal effect from the nanostructures or autofluorescence from the tissue, making the Au-Ag alloyed nanostructures a class of ideal probes for multi-photon imaging.
####
For more information, please click here
Contacts:
Writer:
Emil Venere
765-494-4709
Sources:
Ji-Xin Cheng
765-494-4335
Younan Xia
314-935-8328
Copyright © Purdue University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||