Home > Press > ORNL Z-contrast microscope first to resolve, identify individual light atoms
Abstract:
ORNL Z-contrast microscope first to resolve, identify individual light atoms
Using the latest in aberration-corrected electron microscopy, researchers at the Department of Energy's Oak Ridge National Laboratory and their colleagues have obtained the first images that distinguish individual light atoms such as boron, carbon, nitrogen and oxygen.
The ORNL images were obtained with a Z-contrast scanning transmission electron microscope (STEM). Individual atoms of carbon, boron, nitrogen and oxygen--all of which have low atomic numbers--were resolved on a single-layer boron nitride sample.
"This research marks the first instance in which every atom in a significant part of a non-periodic material has been imaged and chemically identified," said Materials Science and Technology Division researcher Stephen Pennycook. "It represents another accomplishment of the combined technologies of Z-contract STEM and aberration correction."
Pennycook and ORNL colleague Matthew Chisholm were joined by a team that includes Sokrates Pantelides, Mark Oxley and Timothy Pennycook of Vanderbilt University and ORNL; Valeria Nicolosi at United Kingdom's Oxford University; and Ondrej Krivanek, George Corbin, Niklas Dellby, Matt Murfitt, Chris Own and Zotlan Szilagyi of Nion Company, which designed and built the microscope. The team's Z-contrast STEM analysis is described in an article published today in the journal Nature.
The new high-resolution imaging technique enables materials researchers to analyze, atom by atom, the molecular structure of experimental materials and discern structural defects in those materials. Defects introduced into a material--for example, the placement of an impurity atom or molecule in the material's structure--are often responsible for the material's properties.
The group analyzed a monolayer hexagonal boron nitride sample prepared at Oxford University and was able to find and identify three types of atomic substitutions--carbon atoms substituting for boron, carbon substituting for nitrogen and oxygen substituting for nitrogen. Boron, carbon, nitrogen and oxygen have atomic numbers--or Z values-- of five, six, seven and eight, respectively.
The annular dark field analysis experiments were performed on a 100-kilovolt Nion UltraSTEM microscope optimized for low-voltage operation at 60 kilovolts.
Aberration correction, in which distortions and artifacts caused by lens imperfections and environmental effects are computationally filtered and corrected, was conceived decades ago but only relatively recently made possible by advances in computing. Aided by the technology, ORNL's Electron Microscopy group set a resolution record in 2004 with the laboratory's 300-kilovolt STEM.
The recent advance comes at a much lower voltage, for a reason.
"Operating at 60 kilovolts allows us to avoid atom-displacement damage to the sample, which is encountered with low Z-value atoms above about 80 kilovolts," Pennycook said. "You could not perform this experiment with a 300-kilovolt STEM."
Armed with the high-resolution images, materials, chemical and nanoscience researchers and theorists can design more accurate computational simulations to predict the behavior of advanced materials, which are key to meeting research challenges that include energy storage and energy efficient technologies.
The research was funded by the DOE Office of Science.
ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.
####
About Oak Ridge National Laboratory
ORNL is a multiprogram science and technology laboratory managed for the U.S. Department of Energy by UT-Battelle, LLC. Scientists and engineers at ORNL conduct basic and applied research and development to create scientific knowledge and technological solutions that strengthen the nation's leadership in key areas of science; increase the availability of clean, abundant energy; restore and protect the environment; and contribute to national security.
ORNL also performs other work for the Department of Energy, including isotope production, information management, and technical program management, and provides research and technical assistance to other organizations. The laboratory is a program of DOE's Oak Ridge Field Office.
For more information, please click here
Contacts:
Bill Cabage
865-574-4399
Copyright © Eurekalert
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Tools
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Research partnerships
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |