Home > Press > NYU Researchers Create “Handshaking” Particles
NYU physicists have created “handshaking” particles that link together based on their shape rather than randomly. The graphic shows how the researchers developed a “lock and key” mechanism that allows specific particles to join together. Image courtesy of Nature. |
Abstract:
Physicists at New York University have created "handshaking" particles that link together based on their shape rather than randomly. Their work, reported in the latest issue of the journal Nature, marks the first time scientists have succeeded in "programming" particles to join in this manner and offers a type of architecture that could enhance the creation of synthetic materials.
"We expect these interactions to offer unprecedented opportunities for engineering ‘smart' composite particles, new functional materials, and microscopic machinery with mobile parts," wrote the researchers, part of NYU's Center for Soft Matter Research.
The process is centered on creating and manipulating colloids—particles suspended within a fluid medium. Colloidal dispersions comprise such everyday items as milk, gelatin, glass, and porcelain.
Working with microscopic particles—25 placed together, end-to-end, would match the width of a strand of human hair—the researchers developed a "lock and key" mechanism that would allow specific particles to join together much in the way Pac-Man would swallow dots in the 1980s video game.
The "key" is any spherical particle. Creating the "lock," however, required a multi-step polymerization process. To do it, the researchers took a droplet of oil and placed it in water. The process resulted in a hardened outer shell, which would then buckle to form an indentation, or Pac-Man mouth, allowing it to bind to the other sphere ("the key").
The work is part of scientists' ongoing efforts to understand and control how particles self-assemble to make new materials. Complex materials cannot be constructed particle by particle; rather, they must be directed to self-assemble, which would produce these materials in an efficient manner. However, manipulating the self-assembly process has proven elusive to scientists because their understanding of how particles interact is limited.
By creating a process by which particles come together to form an aggregate, physicists at NYU's Center for Soft Matter Research have marked a next step in understanding and developing the self-assembly process.
The paper's authors are: Stefano Sacanna and William Irvine, post-doctoral researchers in NYU's Department of Physics, and NYU Physics Professors Paul Chaikin and David Pine.
####
About New York University
More than 175 years ago, Albert Gallatin, the distinguished statesman who served as secretary of the treasury under Presidents Thomas Jefferson and James Madison, declared his intention to establish "in this immense and fast-growing city ... a system of rational and practical education fitting for all and graciously opened to all." Founded in 1831, New York University is now one of the largest private universities in the United States. Of the more than 3,000 colleges and universities in America, New York University is one of only 60 member institutions of the distinguished Association of American Universities.
For more information, please click here
Contacts:
James Devitt
(212) 998-6808
Copyright © New York University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Synthetic Biology
New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Self Assembly
Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024
Liquid crystal templated chiral nanomaterials October 14th, 2022
Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022
Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||