Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Paper of Special Interest: Nanofluidics Identify Epigenetic Changes One Molecule at a Time

Abstract:
Using a system of nanofluidic channels and multicolor fluorescence microscopy, a team of investigators at Cornell University has developed a method that analyzes the binding of DNA and DNA-binding proteins known as histones at specific locations along individual DNA molecules. The data generated using this method provides information on the so-called epigenetic state of a cell, which reflect differences in the genes that a given cell is expressing at any one time.

Paper of Special Interest: Nanofluidics Identify Epigenetic Changes One Molecule at a Time

Bethesda, MD | Posted on March 22nd, 2010

This research effort was led by Paul Soloway, Ph.D., and Harold Craighead, Ph.D., who is also the principle investigator of the Cornell University Physical Sciences-Oncology Center, one of eight newly established centers funded by the National Cancer Institute to identify and study the physical and biological laws and principles that guide the development and spread of cancer. The investigators published the results of this project in the journal Analytical Chemistry.

Every cell in the body contains the same genetic blueprint, but what differentiates a liver cell from a heart cell is a series of DNA modifications, such as methylation, that determines the specific set of genes that are expressed in a specific type of cell. These modifications are known as epigenetic, rather than genetic, changes since they don't alter DNA's sequence, just its structural properties. Those structural changes determine which genes are accessible to the many proteins involved in turning genetic information into specific proteins.

There are many techniques that researchers can use to probe such epigenetic changes, but these methods require large numbers of cells, and thus, produce an average picture of epigenetic state. In addition, these techniques cannot survey the entire genome, nor can they examine two different types of epigenetic changes simultaneously.

To solve these limitations, the Cornell team created a nanofluidic device capable of flowing individual DNA molecules through a channel and past a detector that can record and analyze the fluorescence of DNA and its associated proteins in real time. The researchers also demonstrated that they can take DNA stripped of its proteins, label it with a fluorescent molecule that binds to methylated bases, and detect specific locations of DNA methylation.

In this set of experiments, the researchers used their nanofluidic system to reveal the frequency and coincidence of epigenetic changes in single DNA molecules. The investigators believe, however, that they will be able to modify the device to rapidly sort DNA-protein structures based on their epigenetic signatures. The sorted chromatin fragments could then be studied further using all the tools of DNA, including DNA sequencing.

his work is detailed in a paper titled, "Single Molecule Epigenetic Analysis in a Nanofluidic Channel." An abstract of this paper is available at the journal's Web site.

View abstract: pubs.acs.org/doi/abs/10.1021/ac9028642

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project