Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoparticles Cooperate to Detect and Treat Tumors

Abstract:
If one nanoparticle is good, two may be better, especially when they are designed to cooperate with each other to diagnose and treat cancer. That finding comes from work led by Michael Sailor, Ph.D., a member of the Center of Nanotechnology for Treatment, Understanding, and Monitoring of Cancer at the University of California, San Diego, and published in the journal Advanced Materials.

Nanoparticles Cooperate to Detect and Treat Tumors

Bethesda, MD | Posted on March 22nd, 2010

Dr. Sailor and his colleagues, including fellow Center member Erkki Ruoslahti, M.D., Ph.D., of the Burnham Institute for Medical Research at the University of California, Santa Barbara, and Sangeeta Bhatia of the Howard Hughes Medical Institute and a member of the MIT-Harvard Center for Cancer Nanotechnology Excellence, have had success developing multifunctional nanoparticles that incorporate several functions - imaging and drug delivery, for example - in one nanoparticle. However, the investigators felt that fitting multiple functions into one nanoparticle was sometimes problematic in terms of getting the right combination of properties needed to fulfill two or more missions inside the body.

For this study, Dr. Sailor and his collaborators decided to create two nanoparticles. One, a polymer-coated gold nanorod, was designed to accumulate in tumors and become warm when irradiated with near infrared light. The second nanoparticle, made of a thermally responsive lipid mixture, was designed to release a drug payload only when encountering cells warmed to 45° C, that is, only where the first nanoparticle had heated tumors.

After injecting the two nanoparticles together into tumor-bearing mice, the investigators illuminated tumors with near infrared light. They then observed that the drug-containing nanoparticles began accumulating and releasing their drug around the tumors. More importantly, the researchers found that the drug killed more cells when the two nanoparticles were used in combination than it did when administered alone or when just the drug-loaded nanoparticle was used. Dr. Sailor's team also observed that subsequent tumor growth was significantly impaired, while the treated mice displayed few adverse side effects from the therapy.

This work, which is detailed in a paper titled, "Cooperative Nanoparticles for Tumor Detection and Photothermally Triggered Drug Delivery," was supported by the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis, and treatment of cancer. An abstract of this paper is available at the journal's Web site.

View abstract: www3.interscience.wiley.com/journal/123191104/abstract?CRETRY=1&SRETRY=0

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project