Home > Press > Gold Nanobeacons Detect Sentinel Lymph Nodes
![]() |
Abstract:
Virtually every patient diagnosed with breast cancer or melanoma undergoes lymph node biopsy to determine if their cancer has begun spreading in the body. Taking this biopsy involves an invasive and uncomfortable procedure, and though necessary it detects metastases less than 95% of the time. To eliminate the need for invasive biopsy, and to improve upon the diagnostic sensitivity of biopsy, researchers have been working to develop non-invasive imaging techniques to identify tumor-bearing sentinel lymph nodes.
Now, a group of investigators at Washington University of St. Louis, led by Dipanjan Pan, Ph.D., and including Gregory Lanza, M.D., and Samuel Wickline, M.D., both members of the Siteman Center of Cancer Nanotechnology Excellence, has developed "soft" gold nanoparticles that accumulate in sentinel lymph nodes and that are visible using a technique known as photoacoustic imaging. The investigators published their results in the journal Biomaterials.
Photoacoustic imaging combines aspects of optical and ultrasound imaging in a sensitive imaging technique suitable for use in the human body. Photoacoustic imaging agents, including gold nanoparticles, emit sound waves when illuminated with specific frequencies of light. In the case of gold nanoparticles, the activating light energy occurs in the near infrared, a region of the optical spectrum that passes readily through biological tissues, and their photoacoustic emissions are strong enough to be detectable using standard clinical ultrasound equipment.
The key to this study was developing a gold nanoparticle imaging agent that balances the rate of accumulation in sentinel lymph nodes with the rate of elimination of particles that the lymph nodes do not trap. The solution was to wrap multiple gold nanoparticles, each 2-4 nanometers in diameter, within a soft polymer matrix, producing a 90 nanometer gold nanobeacon that accumulates rapidly in sentinel lymph nodes. When the investigators injected their nanobeacons into mice and imaged lymph nodes one hour later, they found that the photoacoustic signal was nine-fold stronger in lymph nodes than in surrounding blood vessels. While larger nanoparticles produced a stronger signal, they did not accumulate exclusively in the lymph nodes, so the contrast they produced was much smaller.
This work, which is detailed in a paper titled, "Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons," was supported in part by the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis, and treatment of cancer. An abstract of this paper is available at the journal's Web site.
####
About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.
Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.
For more information, please click here
Copyright © NCI Alliance for Nanotechnology in Cancer
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Possible Futures
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Nanobiotechnology
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |