Home > News > Miracles of the nanoworld: Noise makes nanoelectrodes faster
March 17th, 2010
Miracles of the nanoworld: Noise makes nanoelectrodes faster
Abstract:
Nanotechnology has rapidly gained in importance during recent years. However, when developing nanosystems even further scientists come up against the same problem time and again: many of the principles familiar from the normal, macroscopic world are not valid in the nanoworld. Physicists from the Technische Universität Muenchen (TUM) have now developed a method with which they can compute the behavior of electrochemical nanosystems. Their work is presented in Proceedings of the National Academy of Sciences (PNAS).
Source:
chemie.de
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |