Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Cell-All: Super Smartphones Sniff Out Suspicious Substances

Anywhere a chemical threat breaks out—a mall, a bus, subway, or office—Cell-All will alert the authorities automatically. (Image by Paul Wedig)
Anywhere a chemical threat breaks out—a mall, a bus, subway, or office—Cell-All will alert the authorities automatically. (Image by Paul Wedig)

Abstract:
Crowdsourcing cell phones to detect dangerous chemicals

Cell-All: Super Smartphones Sniff Out Suspicious Substances

Washington, DC | Posted on March 11th, 2010

Years ago, if you wanted to take a picture, you needed a dedicated camera. You needed to buy batteries for it, keep it charged, learn its controls, and lug it around. Today, chances are your cell phone is called a "smartphone" and came with a three-to-five megapixel lens built-in—not to mention an MP3 player, GPS, or even a bar code scanner.

This Swiss Army knife trend represents the natural progression of technology—as chips become smaller and more advanced, cell phones continue to absorb new functions. Yet, in the future, these new functions may not only make our lives easier, they could also protect us—and maybe even save our lives.

The Cell-All initiative may be one such savior. Spearheaded by the Department of Homeland Security's Science and Technology Directorate (S&T), Cell-All aims to equip your cell phone with a sensor capable of detecting deadly chemicals at minimal cost—to the manufacturer (a buck a sensor) and to your phone's battery life. "Our goal is to create a lightweight, cost-effective, power-efficient solution," says Stephen Dennis, Cell-All's program manager.

How would this wizardry work? Just as antivirus software bides its time in the background and springs to life when it spies suspicious activity, so Cell-All regularly sniffs the surrounding air for certain volatile chemical compounds.

When a threat is sensed, a virtual ah-choo! ensues in one of two ways. For personal safety issues such as a chlorine gas leak, a warning is sounded; the user can choose a vibration, noise, text message, or phone call. For catastrophes such as a sarin gas attack, details—including time, location, and the compound—are phoned home to an emergency operations center.

While the first warning is beamed to individuals—a grandmother taking a siesta or a teenager hiking through the woods—the second warning works best with crowds. And that's where the genius of Cell-All lies—in crowdsourcing human safety.

Currently, if a person suspects that something is amiss, he might dial 9-1-1, though behavioral science tells us that it's easier to do nothing. If he does do something, it may be at a risk to his own life. And as is often the case when someone phones in an emergency, the caller may be frantic and difficult to understand, diminishing the quality of information that's relayed to first responders. An even worse scenario: the person may not even be aware of the danger, like the South Carolina woman who last year drove into a colorless, odorless, and poisonous ammonia cloud.

In contrast, anywhere a chemical threat breaks out—a mall, a bus, subway, or office—Cell-All will alert the authorities automatically. Detection, identification, and notification all take place in less than 60 seconds. Because the data are delivered digitally, Cell-All reduces the chance of human error. And by activating alerts from many people at once, Cell-All cleverly avoids the longstanding problem of false positives. The end result: emergency responders can get to the scene sooner and cover a larger area—essentially anywhere people are—casting a wider net than stationary sensors can.

But what about your privacy? Does this always-on surveillance mean that the government can track your precise whereabouts whenever it wants? To the contrary, Cell-All will operate only on an opt-in basis and will transmit data anonymously. "Privacy is as important as technology," avers Dennis. "After all, for Cell-All to succeed, people must be comfortable enough to turn it on in the first place."

For years, the idea of a handheld weapons of mass destruction detector has engaged engineers. In 2007, S&T called upon the private sector to develop concepts of operations. Today, thanks to increasingly successful prototype demonstrations, the Directorate is actively funding the next step in R&D—a proof of principle—to see if the concept is workable.

To this end, three teams from Qualcomm, the National Aeronautics and Space Administration (NASA), and Rhevision Technology are perfecting their specific area of expertise. Qualcomm engineers specialize in miniaturization and know how to shepherd a product to market. Scientists from the Center for Nanotechnology at NASA's Ames Research Center have experience with chemical sensing on low-powered platforms, such as the International Space Station. And technologists from Rhevision have developed an artificial nose—a piece of porous silicon that changes colors in the presence of certain molecules, which can be read spectrographically.

Similarly, S&T is pursuing what's known as cooperative research and development agreements with four cell phone manufacturers: Qualcomm, LG, Apple, and Samsung. These written agreements, which bring together a private company and a government agency for a specific project, often accelerate the commercialization of technology developed for government purposes. As a result, Dennis hopes to have 40 prototypes in about a year, the first of which will sniff out carbon monoxide and fire.

To be sure, Cell-All's commercialization may take several years. Yet the goal seems imminently achievable: Just as Bill Gates once envisioned a computer on every desk in every home, so Stephen Dennis envisions a chemical sensor in every cell phone in every pocket, purse, or belt holster. If it's not already the case, our smartphones may soon be smarter than we are.

####

For more information, please click here

Contacts:

Copyright © U.S. Department of Homeland Security

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Sensors

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Homeland Security

The picture of health: Virginia Tech researchers enhance bioimaging and sensing with quantum photonics June 30th, 2023

Sensors developed at URI can identify threats at the molecular level: More sensitive than a dog's nose and the sensors don't get tired May 21st, 2021

UCF researchers generate attosecond light from industrial laser: The ultrafast measurement of the motion of electrons inside atoms, molecules and solids at their natural time scale is known as attosecond science and could have important implications in power generation, chemical- August 25th, 2020

Highly sensitive dopamine detector uses 2D materials August 7th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project