Home > Press > Vigilance needed in nanotechnology
Abstract:
University of Calgary chemist finds right mix of tools to measure nanomaterials in blood vessels
University of Calgary chemistry professor David Cramb is a step closer to helping solve a complex problem in nanotechnology: the impact nanoparticles have on human health and the environment.
Cramb, director of the Faculty of Science's nanoscience program, and his researchers have developed a methodology to measure various aspects of nanoparticles in the blood stream of chicken embryos. Their discovery is published in the March online edition of Chemical Physics Letters. www.sciencedirect.com/science/journal/00092614.
"With the boom in nanomaterials production there is an increasing possibility of environmental and/or human exposure. Thus there is a need to investigate their potential detrimental effects," says Cramb. "We have developed very specialized tools to begin measuring such impacts."
Nanoparticles are particles or groups of atoms or molecules nanometers in size. One millimetre (or the diameter of the head of a pin) is equal to one-million nanometres. Nanoparticles are already used in the cosmetics industry and are being developed for drug delivery, diagnostic imaging and tissue engineering, to name only a few applications. It is estimated investments in nanotechnology globally will reach about $12 trillion US by 2012.
Cramb is looking for ways to help answer questions including: If embryos are exposed to nanoparticles, where will the nanoparticles go? How will the embryo respond? What regulatory approaches can be recommended to mitigate accidental exposure? How can nanotechnology be made green and sustainable?
"Bioaccumulation studies involving embryos are being conducted in our laboratory," says Cramb. "These studies are important since chronic nanotoxicity in an adult organism could be related to exposure during the development process. Additionally, acute exposure may affect embryonic viability."
Cramb and his researchers studied motion and light induced changes in nanoparticles by focusing a laser beam into a blood vessel containing nanoparticles and measuring fluorescence. (The measurements provide a determination of particles aggregation in the vessel). This is unique because it has never been done in a live embryo. The results will now allow measurement and understanding of uptake into embryonic tissues.
The Organization for Economic Co-operation and Development is leading a global effort to develop research that will help member states to implement sound, science-based regulatory frameworks for the burgeoning nanotechnology industry. NSERC and Canadian Institutes of Health Research (CHRP - Collaborative Health Research Projects Program) have provided $600,000 disbursed over three years to fund research in this area by a team including the research groups of Cramb, Kristina Rinker and Sarah Childs of the University of Calgary and Warren Chan of the University of Toronto.
####
About University of Calgary
The University of Calgary is a comprehensive research university, ranked one of Canada's top seven research universities, combining the best of long-established university traditions with the city of Calgary's vibrant energy and diversity.
The U of C campus occupies a beautiful, park-like setting covering more than 200 hectares, an area larger than Calgary's entire downtown. The university is home to scholars in 17 faculties (offering more than 100 academic programs) and more than 30 research institutes and centres.
More than 27,600 students are currently enrolled in undergraduate, graduate and professional degree programs. The U of C has graduated 135,000 alumni over its 43-year history, including the Prime Minister of Canada, Stephen Harper.
For more information, please click here
Contacts:
Leanne Yohemas
403-220-5144
Copyright © Eurekalert
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Preparing for Nano
Disruptive by Design: Nano Now February 1st, 2019
How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016
Searching for a nanotech self-organizing principle May 1st, 2016
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Environment
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Safety-Nanoparticles/Risk management
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Nanobiotechnology
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |