Home > Press > New ORNL sensor exploits traditional weakness of nano devices
Abstract:
By taking advantage of a phenomenon that until now has been a virtual showstopper for electronics designers, a team led by Oak Ridge National Laboratory's Panos Datskos is developing a chemical and biological sensor with unprecedented sensitivity.
Ultimately, researchers believe this new "sniffer" will achieve a detection level that approaches the theoretical limit, surpassing other state-of-the-art chemical sensors. The implications could be significant for anyone whose job is to detect explosives, biological agents and narcotics.
"While the research community has been avoiding the nonlinearity associated with the nanoscale mechanical oscillators, we are embracing it," said co-developer Nickolay Lavrik, a member of the Department of Energy lab's Center for Nanophase Materials Sciences Division. "In the end, we hope to have a device capable of detecting incredibly small amounts of explosives compared to today's chemical sensors."
The device consists of a digital camera, a laser, imaging optics, a signal generator, digital signal processing and other components that collectively, much like a dog's nose, can detect tiny amounts of substances in the air.
The underlying concept is based on micro-scale resonators that are similar to microcantilevers used in atomic force microscopy, which has recently been explored as mass and force sensing devices. Although the basic principle is simple - measuring changes in the resonance frequency due to mass changes - a number of obstacles have impeded widespread applications of such systems.
"These challenges are due to requirements of measuring and analyzing tiny oscillation amplitudes that are about the size of a hydrogen atom," Lavrik said. Such traditional approaches require sophisticated low-noise electronic components such as lock-in amplifiers and phase-locked loops, which add cost and complexity.
Instead, this new type of sniffer works by deliberately hitting the microcantilevers with relatively large amounts of energy associated with a range of frequencies, forcing them into wide oscillation, or movement. Lavrik likened the response to a diving board's movement after a swimmer dives.
"In the past, people wanted to avoid this high amplitude because of the high distortion associated with that type of response," said Datskos, a member of the Measurement Science and Systems Engineering Division. "But now we can exploit that response by tuning the system to a very specific frequency that is associated with the specific chemical or compound we want to detect."
When the target chemical reacts with the microcantilever, it shifts the frequency depending on the weight of the compound, thereby providing the detection.
"With this new approach, when the microcantilever stops oscillating we know with high certainty that the target chemical or compound is present," Lavrik said.
The researchers envision this technology being incorporated in a handheld instrument that could be used by transportation security screeners, law enforcement officials and the military. Other potential applications are in biomedicine, environmental science, homeland security and analytical chemistry.
With adequate levels of funding, Datskos envisions a prototype being developed within six to 18 months.
UT-Battelle manages ORNL for DOE. Funding is provided by ORNL's Laboratory Directed Research and Development program.
####
About ORNL
ORNL is a multiprogram science and technology laboratory managed for the U.S. Department of Energy by UT-Battelle, LLC. Scientists and engineers at ORNL conduct basic and applied research and development to create scientific knowledge and technological solutions that strengthen the nation's leadership in key areas of science; increase the availability of clean, abundant energy; restore and protect the environment; and contribute to national security.
ORNL also performs other work for the Department of Energy, including isotope production, information management, and technical program management, and provides research and technical assistance to other organizations. The laboratory is a program of DOE's Oak Ridge Field Office.
For more information, please click here
Contacts:
Media Contact:
Ron Walli
Communications and External Relations
865.576.0226
Copyright © ORNL
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chemistry
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Law enforcement/Anti-Counterfeiting/Security/Loss prevention
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Possible Futures
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Sensors
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Homeland Security
The picture of health: Virginia Tech researchers enhance bioimaging and sensing with quantum photonics June 30th, 2023
Sensors developed at URI can identify threats at the molecular level: More sensitive than a dog's nose and the sensors don't get tired May 21st, 2021
Highly sensitive dopamine detector uses 2D materials August 7th, 2020
Military
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
Environment
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Nanobiotechnology
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |