Home > News > Smaller, less expensive deposition systems are enabling biomedical and life science labs to undertake parylene experimentation
February 8th, 2010
Smaller, less expensive deposition systems are enabling biomedical and life science labs to undertake parylene experimentation
Abstract:
Yu-Chong Tai, Ph.D., professor of electrical engineering and bioengineering at the California Institute of Technology (Caltech), has been using parylene for a range of applications to create unique nano-devices.
In his cleanroom laboratory, Tai can deposit a variety of standard thin-film materials and add parylene to the mix. This allows him to combine mono-layers of various types of materials to assemble interesting composite structures.
Basically, Tai is working with "combined semiconductor" deposition technology on a laboratory scale and adding the unique properties of parylene. Laboratory systems provide the same process as basic semiconductor deposition, only on a convenient, research-based level.
For the past ten years, the National Institutes of Health (NIH) has been funding Tai to make micro implants made partly from parylene. These devices, which differ from traditional implants such as pacemakers, have been implanted into the brain for neurostimulation and recording.
Cornell University is also involved in research using parylene materials. The Cornell NanoScale Science and Technology Facility (CNF) focuses on a wide range of semiconductor processing equipment for building nano-devices.
Supported by the National Science Foundation (NSF), the National Nanotechnology Infrastructure Network (NNIN)—an integrated partnership of fourteen user facilities, including the CNF—provides superior opportunities for nanoscience and nanotechnology research. The network provides support in nanoscale fabrication, synthesis, characterization, modeling, design, computation, and training in an open, hands-on environment available to all qualified users.
Source:
laboratoryequipment.com
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Laboratories
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Thin films
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Nanoelectronics
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Tools
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Nanobiotechnology
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||