Home > Press > ScotGrid and Lumerical Team up to Boost UK Nanophotonics Research
![]() |
Abstract:
Lumerical Solutions has donated FDTD Solutions Engine licenses to ScotGrid, one of the largest grid computing sites in the United Kingdom. The donated licenses will enable photonics researchers at academic institutions to perform large-scale simulations of devices such as silicon photonics components, solid-state light emitters, and thin-film solar cells.
UK academic researchers working in the area of photonics have been given a boost today with the announcement that Vancouver-based Lumerical Solutions, Inc. (www.lumerical.com) has donated ten FDTD Solutions Engine licenses to ScotGrid. Scientists are now able to perform large-scale design of devices across a diverse range of applications in biophotonics, display technologies, solar energy, and optical communications, sensing and imaging on one of the largest grid computing facilities in the United Kingdom. The donated Engine licenses allow researchers in the UK using FDTD Solutions to run, at no additional cost, their simulations efficiently on any of ScotGrid's 1,900 processing cores.
"ScotGrid is delighted to be in partnership with Lumerical to reach new research communities in the field of optics and photonics," according to Douglas McNab, the Deputy Technical Coordinator of the ScotGrid facility in Glasgow. "The donated FDTD Solutions Engine licenses from Lumerical have been easily integrated into our grid middleware and the first users are already starting to reap the rewards of the large computing resources on offer at ScotGrid." Glasgow, the leading UK grid site, is already involved with existing projects in the UK as part of GridPP and internationally as part of EGEE and WLCG.
"We are excited to be working with ScotGrid to help our UK customers make more timely discoveries and get greater value out of their investment in our simulation products," according to Michael Newland, Lumerical's CEO. "We are very happy to have found such a credible and competent partner as ScotGrid who shares our goal of strengthening UK nanophotonics research."
Researchers at the University of Glasgow are already generating results more rapidly by using Lumerical's FDTD Solutions in conjunction with ScotGrid. "A large number of users in our department rely on FDTD Solutions as an integral tool to conduct research in a wide range of fields, including biophotonics, terahertz photonics, and optoelectronics," according to Dr. Marc Sorel, a lecturer in the Department of Electronics and Electrical Engineering. "As users of FDTD Solutions begin to work on more complicated three-dimensional models, the ability to run large-scale FDTD jobs on ScotGrid has enabled us to accelerate our research efforts."
As a part of GridPP, ScotGrid is accessible to any UK academic researcher who has applied for access. After their application has been approved, prototyping nanophotonic components using ScotGrid begins by first setting up the simulation file using FDTD Solutions on the user's local machine. Once the design file has been prepared, it is submitted to ScotGrid where one of the ten donated Engine licenses simulates the performance of the device on as many of processing cores as the user specifies.
The Nano Research Group at the University of Southampton is another group that will be making use of the combined capabilities of FDTD Solutions running on ScotGrid. "We use FDTD Solutions to explore how optical integrated circuits composed of photonic nanowires and photonic crystal can be applied to various technologies of industrial interest, including optical interconnects, logic switches, sensing, illumination and display technologies," says Dr. Harold Chong, a lecturer in the School of Electronics and Computer Science. "The potential to run many simulations at the same time on the large computing resources of ScotGrid will have an immense impact on the research productivity of my group."
More information about how users obtain access to ScotGrid can be found at www.scotgrid.ac.uk/fdtd, while information about the capabilities of FDTD Solutions can be found by visiting www.lumerical.com/fdtd.php.
####
About Lumerical
Since its inception in 2003, Lumerical has pioneered breakthrough simulation technologies that help bring new optical product concepts to life. By empowering research and product development professionals with high performance optical design software that leverages recent advances in computing technology, Lumerical helps optical designers tackle challenging design goals and meet strict deadlines. Lumerical's design software solutions are employed in more than 25 countries by global technology leaders like Agilent, ASML, Philips, Olympus, Samsung, and STMicroelectronics, and prominent research institutions including Harvard, NIST, the Max Planck Institute, and the Chinese Academy of Sciences. Discover how Lumerical can help you meet your own design objectives by visiting us online at www.lumerical.com
About ScotGrid
ScotGrid is collaboration between the Universities of Glasgow, Edinburgh and Durham. It is part of the Enabling Grids for E-sciencE (EGEE) project and GridPP. EGEE is Europe's leading grid computing project designed to enable high quality computing facilities for a diverse range of disciplines and GridPP provides the high performance computing for UK particle physics research. For more information on ScotGrid, please visit www.scotgrid.ac.uk.
About GridPP
GridPP is a collaboration of particle physicists and computer scientists from the UK and CERN. They have built a distributed computing Grid across the UK for particle physicists. At the moment there is a working particle physics Grid across 17 UK institutions. For more information on GridPP, please visit www.gridpp.ac.uk.
For more information, please click here
Contacts:
Todd Kleckner
Director of Sales and Marketing
Lumerical Solutions, Inc.
Copyright © Lumerical
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Display technology/LEDs/SS Lighting/OLEDs
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024
Thin films
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023
New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022
Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Tools
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Patents/IP/Tech Transfer/Licensing
Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023
Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021
Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020
Photonics/Optics/Lasers
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |