Home > Press > Finding the perfect spot to rest
![]() |
Like spokes on a gear, alkyl chains twist and stop at specific spots on the surface of the catalyst titanium dioxide. |
Abstract:
Prima donnas. Floppy hydrocarbon chains are quite particular about where they'll rest on a catalyst, according to a recent study by the Department of Energy's Pacific Northwest National Laboratory and the University of Texas at Austin.
On the surface of the common catalyst titanium dioxide, these hydrocarbon chains settle into valleys of titanium atoms, avoiding nearby ridges of oxygen atoms. The alkyl chains are drawn to these locations because of a weak attraction to the titanium. Understanding where the alkyl chains reside aids scientists in precisely modifying catalyzed reactions, such as the those used in producing biofuels. This work was done using instruments at the Department of Energy's EMSL, a national scientific user facility at PNNL.
####
For more information, please click here
Contacts:
Kristin Manke
509.372.6011
Copyright © DOE Pulse
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chemistry
Quantum interference in molecule-surface collisions February 28th, 2025
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Automotive/Transportation
Leading the charge to better batteries February 28th, 2025
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |