Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Next-gen storage that makes SSD look slow

January 27th, 2010

Next-gen storage that makes SSD look slow

Abstract:
In 2005, we got perpendicular recording (the magnetic regions are arranged vertically rather than end to end). All this engineering effort meant for years now data densities on the platter where growing by 100 per cent a year, without prices doing the same. Now a typical drive of 500GB or 1TB costs about £50, give or take.

Enter the cocky solid state drive to step all over the old guard, sporting no moving parts and access times a spinning disc could only dream of.

From its origins in server and racks, through USB keys, we now have solid state drives that plug straight into SATA, so you can simply plug them in and off you trot. Instead of all that moving about gubbins you've a mass of non-volatile NAND flash memory. Great stuff, problem solved.

SSDs are excellent at random reads, there's no disc head to position, it'll run a hundred times faster than its mechanical cousin with random access times of about a tenth of a millisecond versus up to 10 milli-seconds. Sequential reads run at 150 to 200MB/s, double or more that of a typical HHD.

There are a good dozen new memory technologies in the wings - MRAM, CBRAM, PRAM, NRAM, SONOS, TRAM, FeRAM and many more. Some use a matrix of magnets to store bits, others use ions within an electrolyte, phase changing materials or various applications of nanotechnology. The dream of some is a universal memory - a single big block of RAM replacing all storage and your main memory.

Source:
techradar.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Memory Technology

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project