Home > Press > Building body parts using nanocellulose
![]() |
Paul Gatenholm. Photo: Jan-Olof Yxell |
Abstract:
As the first group in the world, researchers from Chalmers will build up body parts using nanocellulose and the body's own cells. Funding will be from the European network for nanomedicine, EuroNanoMed.
Professor Paul Gatenholm at Chalmers is leading and co-ordinating this European research programme, which will construct an outer ear using nanocellulose and a mixture of the patient's own cartilage cells and stem cells.
"We are of course extremely proud as this indicates that we are at the very forefront in European nanomedicine. But above all it is exciting that we have now taking further steps with new applications for nanocellulose," states Paul Gatenholm.
Previously, Paul Gatenholm and his colleagues succeeded, in close co-operation with Sahlgrenska University Hospital, in developing artificial blood vessels using nanocellulose, where small bacteria "spin" the cellulose.
In the new programme, the researchers will build up a three-dimensional nanocellulose network that is an exact copy of the patient's healthy outer ear and construct an exact mirror image of the ear. It will have sufficient mechanical stability for it to be used as a bioreactor, which means that the patient's own cartilage and stem cells can be cultivated directly inside the body or on the patient, in this case on the head.
"As yet we do not know if it will work. It is an extremely exciting project that brings together expertise in image analysis, prototype manufacturing, biomechanics, biopolymers and cell biology. If we succeed it will open up a whole range of new and exciting areas of use."
Funding is from the European network for nanomedicine, EuroNanoMed, whose aim is to shorten the time from research to application within nanomedicine. The Swedish research Council and Vinnova are also part of the network.
"The decision came at the beginning of November and we have just received a very positive evaluation of our proposal for the programme and a final decision regarding funding," says Paul Gatenholm.
The nanocellulose programme also includes the Biomechanics Group from the university of technology ETH in Zurich, Switzerland, clinics from Ulm University Medical Center in Germany and Erasmus University Medical Center in Rotterdam in the Netherlands as well as two smaller enterprises, the German company CellMed and the Dutch company Cellco Tec.
Cellulose-based material is of strategic significance to Sweden and materials science is one of Chalmers eight areas of advance. Biopolymers are highly interesting as they are renewable and could be of major significance in the development of future materials.
Further research into using the forest as a resource for new materials is continuing at Chalmers within the new research programme that is being built up with different research groups at Chalmers and Swerea - IVF. The programme is part of the Wallenberg Wood Science Center, which is being run jointly by the Royal Institute of Technology in Stockholm and Chalmers under the leadership of Professor Lars Berglund at the Royal Institute of Technology.
####
About Chalmers University of Technology
Chalmers is a Swedish university of technology in which research and teaching are conducted on a broad front within technology, natural science and architecture. Our inspiration lies in the joy of discovery and the desire to learn. Underlying everything we do is a wish to contribute to sustainable development both in Sweden and world-wide.
For more information, please click here
Contacts:
Professor Paul Gatenholm
Biopolymer Technology
Chalmers University of Technology, Gothenburg.
Tel: +46 (0)31772 34 07, mobil: +46(0)707-535750
Copyright © Chalmers University of Technology
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Nanobiotechnology
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |