Home > Press > Building body parts using nanocellulose
Paul Gatenholm. Photo: Jan-Olof Yxell |
Abstract:
As the first group in the world, researchers from Chalmers will build up body parts using nanocellulose and the body's own cells. Funding will be from the European network for nanomedicine, EuroNanoMed.
Professor Paul Gatenholm at Chalmers is leading and co-ordinating this European research programme, which will construct an outer ear using nanocellulose and a mixture of the patient's own cartilage cells and stem cells.
"We are of course extremely proud as this indicates that we are at the very forefront in European nanomedicine. But above all it is exciting that we have now taking further steps with new applications for nanocellulose," states Paul Gatenholm.
Previously, Paul Gatenholm and his colleagues succeeded, in close co-operation with Sahlgrenska University Hospital, in developing artificial blood vessels using nanocellulose, where small bacteria "spin" the cellulose.
In the new programme, the researchers will build up a three-dimensional nanocellulose network that is an exact copy of the patient's healthy outer ear and construct an exact mirror image of the ear. It will have sufficient mechanical stability for it to be used as a bioreactor, which means that the patient's own cartilage and stem cells can be cultivated directly inside the body or on the patient, in this case on the head.
"As yet we do not know if it will work. It is an extremely exciting project that brings together expertise in image analysis, prototype manufacturing, biomechanics, biopolymers and cell biology. If we succeed it will open up a whole range of new and exciting areas of use."
Funding is from the European network for nanomedicine, EuroNanoMed, whose aim is to shorten the time from research to application within nanomedicine. The Swedish research Council and Vinnova are also part of the network.
"The decision came at the beginning of November and we have just received a very positive evaluation of our proposal for the programme and a final decision regarding funding," says Paul Gatenholm.
The nanocellulose programme also includes the Biomechanics Group from the university of technology ETH in Zurich, Switzerland, clinics from Ulm University Medical Center in Germany and Erasmus University Medical Center in Rotterdam in the Netherlands as well as two smaller enterprises, the German company CellMed and the Dutch company Cellco Tec.
Cellulose-based material is of strategic significance to Sweden and materials science is one of Chalmers eight areas of advance. Biopolymers are highly interesting as they are renewable and could be of major significance in the development of future materials.
Further research into using the forest as a resource for new materials is continuing at Chalmers within the new research programme that is being built up with different research groups at Chalmers and Swerea - IVF. The programme is part of the Wallenberg Wood Science Center, which is being run jointly by the Royal Institute of Technology in Stockholm and Chalmers under the leadership of Professor Lars Berglund at the Royal Institute of Technology.
####
About Chalmers University of Technology
Chalmers is a Swedish university of technology in which research and teaching are conducted on a broad front within technology, natural science and architecture. Our inspiration lies in the joy of discovery and the desire to learn. Underlying everything we do is a wish to contribute to sustainable development both in Sweden and world-wide.
For more information, please click here
Contacts:
Professor Paul Gatenholm
Biopolymer Technology
Chalmers University of Technology, Gothenburg.
Tel: +46 (0)31772 34 07, mobil: +46(0)707-535750
Copyright © Chalmers University of Technology
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||