Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A successful collaboration and a new instrument for Diamond Light Source

The team involved with RASOR
The team involved with RASOR

Abstract:
On Friday 8th January 2010 Diamond became the proud owner of a new instrument that will enhance the capabilities of the facility's surface and interfaces research village, enabling more complicated and sensitive experiments.

A successful collaboration and a new instrument for Diamond Light Source

South Oxfordshire, UK | Posted on January 13th, 2010

The Reflectivity and Advanced Scattering from Ordered Regimes end station, or RASOR, as it is known, is a soft X-ray diffractometer that enables scientists to study strongly correlated electron systems by directly probing their magnetic, charge and orbital structures. This area of research can potentially provide a fundamental basis in the pursuit of a new generation of electronic data storage equipment, such as ultra-fast memory devices.

Provided for Diamond through a collaboration between the University of Durham, the Science and Technology Facilities Council (STFC) and Diamond itself, funding was awarded to Co-Principal Investigators on the project, Prof. Peter Hatton (Durham) and Prof. Gerrit van der Laan (STFC/Diamond), through a facility development grant to design and construct RASOR. The project was driven by Dr Tom Beale, Post-Doctoral Reseach Associate with Durham University and STFC, who has been in charge from inception to successful commissioning.

During the official handover ceremony at Diamond, the Vice-Chancellor of the University of Durham, Prof. Chris Higgins, congratulated everyone for delivering a successful project, before handing over to Prof. Gerd Materlik, CEO of Diamond, who thanked those involved for their hard work and spoke about the importance of collaboration and scientific advancement.

RASOR is a multipurpose end station that can be used for both diffraction and reflectivity techniques. It will initially be installed on Diamond's Nanoscience beamline (I06), before moving to its permanent home - the Beamline for Advanced Dichroism Experiments (BLADE, I10), which is currently under construction. Upon its completion and installation at Diamond, Prof. Hatton is delighted with the results.

"The RASOR project is unique in that it is an instrument built by the user community for the user community. It is immensely rewarding to see the close collaboration between Durham, Diamond and STFC successfully result in a versatile instrument on time and on budget. My research group and I are looking forward to using RASOR in the future." Prof Peter Hatton, University of Durham

Commissioning of RASOR took place in the autumn of 2009 with the first X-ray beam in the instrument in October last year. The first scientific results were collected soon after by Dr Beale, successfully demonstrating both reflectivity and diffraction techniques. Based at the Diamond synchrotron, Prof. van der Laan, is pleased with the project.

"It is exciting to see RASOR up and running on I06 at Diamond. The first results that Durham achieved were very promising and we hope for many groundbreaking results in the future that will continue to push the boundaries of our knowledge of the electronic and magnetic structure of materials." Prof Gerrit van der Laan, Diamond Light Source

RASOR is now available for user experiments at Diamond Light Source and is a UK national facility.

####

About Diamond Light Source
Diamond Light Source is the UK national synchrotron facility. Located in South Oxfordshire, it generates brilliant beams of light, from infra-red to X-rays, which are used in a wide range of applications, from structural biology through fundamental physics and chemistry to cultural heritage.

Construction of this new scientific facility began in early 2003 and Diamond became operational on schedule in January 2007. The Company is a Joint Venture funded by the UK Government through STFC (86%) and the Wellcome Trust (14%). Phase I investment of £263 million includes Diamond’s buildings and the first seven experimental stations or beamlines. Phase II funding of £120 million for a further 15 beamlines was confirmed in October 2004. The facility represents the largest UK scientific investment for 40 years and can ultimately host up to 40 beamlines.

For more information, please click here

Contacts:
Tel: 01235 778000
Fax: 01235 778499

Copyright © Diamond Light Source

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Memory Technology

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project