Home > Press > 'Robotic Scientist' will run experiments too complex for humans -- to understand addiction
Abstract:
A "robotic scientist" that can automatically plan and execute experiments may soon provide new insights into the biology of addiction to drugs and alcohol.
Further down the road, the artificial intelligence (AI) that controls the experiments, dubbed "Eureqa," could be applied to a wide variety of problems in biology, including detecting disease organisms or traces of toxic chemicals, said Hod Lipson, associate professor of mechanical and aerospace engineering and computing and information science.
Lipson and graduate student Michael Schmidt have already demonstrated the system's ability to derive natural laws of motion from observations of a physical system. The new work focuses on biology, where there are often hundreds of interacting variables. "Many systems in biology are too complex to analyze manually," Schmidt said. "There may be new things we haven't found because they're ugly and complex, but to the computer they're obvious."
Unlike current drug tests that look for the drug itself or its breakdown products, the new approach will search for traces of previous use. Preliminary experiments suggest that drugs like alcohol and cocaine bring about changes in the metabolism of cells that might change the chemicals the cells secrete in response to certain stimuli. Detecting those secretions could make a test that's harder to fool, and information on past use could be valuable in choosing the best treatment for a drug abuser.
The quest for the new test is a collaboration among Cornell, Vanderbilt and Duke universities and the National Institute on Drug Abuse of the National Institutes of Health, which has provided $2.7 million in stimulus money from the American Reinvestment and Recovery Act (ARRA) to fund the project. It combines nanotechnology to isolate and manipulate a small number of immune-system cells called leukocytes, computer-controlled equipment to infuse the cells with various chemicals and analyze proteins and other materials they secrete in response, and Lipson and Schmidt's AI system to interpret the results of an experiment and direct the apparatus to conduct new experiments.
Vanderbilt scientists will feed leucocytes from the blood of rats and mice addicted to cocaine or alcohol into their analytical apparatus for comparison to "control" cells from non-addicted animals. A high-performance parallel computer at Cornell will remotely control the apparatus at Vanderbilt.
Given the results of the first, hand-operated experiment, the computer will randomly generate many sets of rules that might explain the relationship between the inputs and outputs. It will then run simulations using these rules to see if the results fit the data. The ones that come closest will be tweaked and run again, repeating until only the best remain. There will be several sets of rules because, Schmidt said, at the beginning there is very little data and many possible explanations for the results. So the computer will then evolve new experiments that create the most disagreement between predictions of competing candidate rules.
"We can add a certain nutrient, or a little more of this or less of that," Lipson explained. "New data will refute some of the models. Some models will die out, some will be supported and spawn off even better models. Processing the results of one experiment and sending back instructions for the next should take about two minutes. We might conduct hundreds of experiments, gradually zeroing in on the truth."
What should emerge at the end is a set of input conditions that produce a clear signature of exposure to a particular drug.
The Eureqa software is freely available online at ccsl.mae.cornell.edu/eureqa. "We are looking for other collaborations where automated experimentation can be useful," Lipson said.
The ARRA grant will support graduate students at Cornell and Vanderbilt and create jobs at participating companies in six other states, the scientists said. To date, Cornell has received 129 ARRA grants, totaling almost $105 million.
####
About Cornell University
Once called "the first American university" by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.
Today's Cornell reflects this heritage of egalitarian excellence. It is home to the nation's first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.
For more information, please click here
Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093
Cornell Chronicle:
Bill Steele
(607) 255-7164
Copyright © Cornell University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Jobs
Could quantum technology be New Mexico’s next economic boon? Quantum New Mexico Coalition aims to establish state as national hub April 1st, 2022
SEMI Partners with GLOBALFOUNDRIES to Offer Apprenticeship Program Aimed at Building the Electronics Talent Pipeline August 11th, 2020
Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) March 29th, 2019
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanomedicine
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Tools
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Turning up the signal November 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Nanobiotechnology
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |