Home > Press > Tiny whispering gallery
The high-Q microresonators could be mass produced by the hundreds of thousands on silicon wafers. Each torus is 20 to 30 micrometers across, one-tenth the size of the period at the end of this sentence. In this image, two particles (bright spots) have landed on the closest microresonator and are acting as scattering centers that disturb the light waves in the torus. This allows them to be detected and measured. Credit: Jiangang Zhu and Jingyang Gan/WUSTL |
Abstract:
A sensor can detect a single nanoparticle and take its measurement
Nanotechnology has already made it to the shelves of your local pharmacy and grocery: nanoparticles are found in anti-odor socks, makeup, makeup remover, sunscreen, anti-graffiti paint, home pregnancy tests, plastic beer bottles, anti-bacterial doorknobs, plastic bags for storing vegetables, and more than 800 other products.
How safe are these products and the flood of new ones about to spill out of labs across the world? A group of researchers at Washington University is devising instruments and protocols to assess the impact of nanoparticles on the environment and human health before they are sent to market
As part of this effort, a team led by Lan Yang, Ph.D., assistant professor of electrical and systems engineering, has devised a sensor on a chip that can not only detect but also measure single particles. They expect the sensor will be able to measure nanoparticles smaller than 100 nanometers in diameter (about the size of a virus particle) on the fly.
The new sensor, an improved version of a sensor called a whispering-gallery microresonator, is described in the December 13 edition of Nature Photonics's advanced online publication.
Whispering galleries
The sensor belongs to a class of devices charmingly called whispering-gallery-mode resonators.
One famous whispering gallery is St. Paul's Cathedral in London. If you stand under the dome close to the wall and speak softly to the wall, someone on the opposite side of the gallery is able to hear what you say.
The reason is the sound bounces along the wall of the gallery with very little loss of energy and so can be heard at a great distance.
However, if you speak at normal volume, what you say can no longer be understood. The sound travels around the dome more than once, and the recirculating signal gets mixed up and garbled.
Whispering-gallery microresonators
In a miniature version of a whispering gallery, laser light is coupled into a circular "waveguide," such as a glass ring. When the light strikes the boundary of the ring at a grazing angle it is reflected back into the ring.
The light wave can make many trips around the ring before it is absorbed, but only frequencies of light that fit perfectly into the circumference of the ring can do so. If the circumference is a whole number of wavelengths, the light waves superimpose perfectly each trip around.
This perfect match between the frequency and the circumference is called a resonance, or whispering-gallery mode.
The glass resonator can serve as a particle detector because the faint outer edge of the light wave, called its "evanescent tail," penetrates the ring's surface, probing the surroundings. So when a particle attaches to the ring, it disturbs the light wave, changing the resonant frequency. This change can be used to measure the size of the particle.
There are two problems with these microresonators, says Yang. One is that they are finicky. Lots of things can shift the resonant frequency, including vibration or temperature changes.
The other is that the frequency shift depends on where the particle lands on the ring. A particle that happens to land on a node (the dark blue areas reflected on the base of the pedestal in the accompanying image) will disturb the light wave less and appear smaller than a particle of the same size that happens to land on an anti-node (the red spots visible on the base).
For this reason the frequency shift is not a reliable measure of particle size.
The ultra-high-Q microresonator
The way around these problems is a self-referring sensing scheme possible only in an exceptionally good resonator, one with virtually no optical flaws.
Yang's lab uses surface tension to achieve the necessary perfection. The microresonators are etched out of glass layers on silicon wafers by techniques borrowed from the integrated circuit industry. These techniques allow the rings to be mass produced but leave them with rough surfaces.
In a crucial finishing step, the microresonators are reheated with a pulsed laser until the glass reflows. Surface tension then pulls the rings into smooth toruses.
"Nature helps us create the perfect structure," says Yang.
"This quality factor gives the sensor a resonance as beautiful as the pure tone from the finest musical instrument," says Jiangang Zhu, a graduate student in Yang's lab.
The Q value, or quality factor, of the reflowed resonators, a measure of microscopic imperfections that sap energy from the resonating mode, is about 100 million, meaning that light circles the ring many time. Because recirculation dramatically increases the interaction of the light wave and particles on the ring's surface, a different approach to particle detection is possible: mode splitting.
Each whispering-gallery mode is actually two modes: the light travels both clockwise and counterclockwise around the resonator. These modes are usually "degenerate," meaning they have the same frequency.
When a particle lands on a resonator, it acts as a scattering center that couples energy between the modes. The two modes re-arrange themselves so that the particle lies on a node of one and an anti-node of the other. As a result, one wave is much more perturbed than the other, and this "lifts the degeneracy," or "splits the mode."
In a low-Q resonator, the split mode can't be resolved. But in the high-Q resonator it is easily seen.
A sensor that relies on mode splitting is much less finicky than a frequency-shifting sensor. Because the clockwise and counterclockwise light waves share the same resonator, they share the same noise. Any jitter or jiggle that biases one biases the other by the same amount. Because it is self-referring, the sensor is more accurate and reliable.
Mode splitting also solves the particle location problem. The light scattering that perturbs the mode also broadens it. The mode split still varies with the location of the particle, but the ratio of the mode split and the difference between the linewidths (the breadth) of the two modes depends only on the particle's size.
To test the sensor, Daren Chen, Ph.D., associate professor of energy, environmental and chemical engineering, helped the team generate nanoparticles within specifc size ranges. In experiments with nanoparticles of salt or nanospheres of plastic, the resonator's size estimates were within one or two percent of the actual values.
"Size is a key parameter that significantly affects the physical and chemical properties of nanoparticles," says Yang. "It plays a crucial role in the applications of nanoparticles both in science and in industry, all of which will benefit from the ability to measure these particles accurately."
____________________________
This work is partially supported by the McDonnell Academy Global Energy and Environment Partnership and the Center for Materials Innovation at Washington University.
Jiangang Zhu, Sahin Kaya Ozdemir, Yun-Feng Xioa, Lin Li, Lina He, Da-Ren Chen and Lan Yang, "On-chip Single Nanoparticle Detection and Sizing by Mode splitting in an Ultra-high-Q Microresonator, Nature Photonics, advanced online edition, Dec. 13, 2009.
####
About Washington University in St. Louis
Washington University is a medium-sized, independent university dedicated to challenging its faculty and students alike to seek new knowledge and greater understanding of an ever-changing, multicultural world.
The University is highly regarded for its commitment to excellence in learning. Its programs, administration, facilities, resources, and activities combine to further its mission of teaching, research, and service to society.
For more information, please click here
Contacts:
Media Assistance:
Diana Lutz
Senior Science Editor
(314) 935-5272
Lan Yang
Assistant professor of electrical and systems engineering
(314) 935-9543
Copyright © Washington University in St. Louis
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Preparing for Nano
Disruptive by Design: Nano Now February 1st, 2019
How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016
Searching for a nanotech self-organizing principle May 1st, 2016
Products
Spectradyne Partners with Particle Technology Labs for Measurement Services December 6th, 2018
Mode-Changing MEMS Accelerometer from STMicroelectronics Combines High Measurement Resolution and Ultra-Low Power for Industrial Applications November 7th, 2018
Fat-Repellent Nanolayers Can Make Oven Cleaning Easier October 17th, 2018
Aculon, Inc. Enters into Strategic Partnership Agreement with Henkel Corporation to Supply Key Mobile Device Manufacturers with NanoProof® PCB Waterproof Technology October 17th, 2018
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Environment
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
Safety-Nanoparticles/Risk management
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||