Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > National Science Foundation Grants Award to Modumetal for High Temperature Diesel Engine Coatings

Abstract:
Seattle-based Modumetal, Inc announced today that it has received a National Science Foundation (NSF) award for a cutting-edge new coating that is expected to improve the operating performance of diesel engines. Modumetal's coating technology will provide for greater operating temperatures to be achieved in diesel engines, thus improving fuel efficiency and reducing emissions.

National Science Foundation Grants Award to Modumetal for High Temperature Diesel Engine Coatings

Seattle, WA | Posted on December 16th, 2009

There is an ever increasing demand in the marketplace and in the regulatory environment for improvements in the fuel efficiency of transportation vehicles. A major limiting factor in meeting these needs is the availability of advanced materials that can survive the requisite operating temperatures. Modumetal's Thick Thermal Barrier Coatings (T-TBC), which will be developed under the subject contract, is such a material that will provide the basis for high-temperature, high-efficiency automobile and truck diesel engines by reducing the apparent temperature at the engine's base metal and protecting against abrasion and high temperature-accelerated degradation.

The project, which will be lead by Modumetal's Dr. John Whitaker, will involve specific application of a novel, nanolaminated T-TBC for insulation of critical engine components such as piston crowns, valve faces, and cylinder heads, and lower the heat rejected to the cooling system, which in turn increases the amount of the combustion energy converted to useful work.

From an environment protection standpoint, the additional advantages afforded by higher diesel operating temperatures include reductions in both carbon emissions (unburned hydrocarbons, particulates, and CO2) and noise. According to TBC Vice President, Todd Wallen, "Modumetal's TBCs are not only reducing the emission of carbon into the environment, but are also eliminating the creation of additional waste of natural resources by ensuring longer life and efficiency in equipment and operations. So that as this NSF Award elevates further the performance advancements made possible by Modumetal's unique coating technology, the recognition also punctuates the growing economic and positive environmental impact of this broad nanotechnology field."

"The NSF Award further validates the progress we've made both as a company, and as a solutions provider in a key U.S. industry which needs such innovative technologies as this one in order to secure a position in the forefront of a competitive and demanding international marketplace," said Modumetal CEO, Christina Lomasney.

####

About Modumetal
Modumetal, based in the heart of Seattle, Washington, is realizing the commercial potential of a unique class of nanolaminated materials. Modumetal is creating materials that will change design and manufacturing of metals by redefining structural, corrosion and high temperature performance. Modumetal represents a whole new way of producing parts and is leveraging nanotechnology to achieve this unprecedented performance. Modumetal is made by a “green” electrochemical manufacturing approach, which reduces the carbon footprint of conventional metals manufacturing at the same time that it revolutionizes materials performance.

About Modumetal’s Manufacturing Process

The manufacturing process, Modumetal by Design (MbD), is a low-cost, scalable, and net-shape descendant of electrochemical manufacturing. MbD is a non-line-of-site, ambient-temperature process that supports the production of a wide range of fully dense metals, alloys and net-shape parts. MbD differs from conventional electrochemical plating and forming in its precise, time-varying control of plating conditions at the workpiece surface, producing laminated structures with wavelengths approaching several nanometers. The Modumetal technology is the subject of several issued and pending patents.

For more information, please click here

Contacts:
877-632-4242

Copyright © PRWeb

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Environment

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

New gel could boost coral reef restoration: The substance, applied to surfaces as a coating, improved coral larvae settlement by up to 20 times in experiments compared to untreated surfaces May 16th, 2025

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Energy

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Automotive/Transportation

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Leading the charge to better batteries February 28th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

New-Contracts/Sales/Customers

Bruker Light-Sheet Microscopes at Major Comprehensive Cancer Center: New Advanced Imaging Center Powered by Two MuVi and LCS SPIM Microscopes March 25th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Veeco Announces Aledia Order of 300mm MOCVD Equipment for microLED Displays: Propel™ Platform First 300mm System with EFEM Designed for Advanced Display Applications October 20th, 2020

GREENWAVES TECHNOLOGIES Announces Next Generation GAP9 Hearables Platform Using GLOBALFOUNDRIES 22FDX Solution October 16th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project