Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanomedicine: ending 'hit and miss' design

Jennifer West, Isabel C. Cameron Professor of Bioengineering
Jennifer West, Isabel C. Cameron Professor of Bioengineering

Abstract:
Rice, TMC team wins stimulus funds for nanoparticle standardization.

Nanomedicine: ending 'hit and miss' design

Houston, TX | Posted on December 9th, 2009

One of the promises of nanomedicine is the design of tiny particles that can home in on diseased cells and get inside them. Nanoparticles can carry drugs into cells and tag cells for MRI and other diagnostic tests; and they may eventually even enter a cell's nucleus to repair damaged genes. Unfortunately, designing them involves as much luck as engineering.

"Everything in nanomedicine right now is hit-and-miss as far as the biological fate of nanoparticles," said Rice University bioengineering researcher Jennifer West. "There's no systematic understanding of how to design a particle to accomplish a certain goal in terms of where it goes in a cell or if it even goes into a cell."

West's lab and 11 others in the Texas Medical Center -- including three at Rice's BioScience Research Collaborative -- are hoping to change that, thanks to a $3 million Grand Opportunity (GO) grant from the National Institutes of Health. NIH established the GO grant program with funding from the American Recovery and Reinvestment Act (ARRA).

One problem facing scientists today is that nanoparticles come in many shapes and sizes and can be made of very different materials. Some nanoparticles are spherical. Others are long and thin. Some are made of biodegradable plastic and others of gold, carbon or semiconducting metals. And sometimes size -- rather than shape or material -- is all-important.

West demonstrates this using a video on her computer that was created by Rice GO grant investigator Junghae Suh. The movie was created by snapping an image with a microscope every few seconds. In the video, dozens of particles move about inside a cell. Half of the particles are tagged with a red fluorescent dye and move very slowly. The rest are green and zip from place to place.

"These are made of the same material and have the same chemistry," said West, Rice's Isabel C. Cameron Professor and department chair of Bioengineering. "They are just different sizes. Yet you can see the profound differences in how they are moving in the cell. As we start to explore out further in the range of sizes and in altering the chemistry of the particles, we think we're likely to see even bigger impacts on where things go inside the cell."

The job of determining whether that's the case falls to Suh, assistant professor in bioengineering at Rice. Unlike other studies in the field, which rely on snapshots of dead cells, Suh's method lets researchers track single particles in living cells. Her lab will use the method in side-by-side comparisons of particles provided by the other 11 laboratories in the study.

In all, eight classes of nanoparticles will be studied. These include long, thin tubes of pure carbon called fullerenes, tiny specks of semiconductors called quantum dots, pure gold rods and spheres, as well as nanoshells -- nanoparticles invented at Rice that consist of a glass core covered by a thin gold shell. In addition, Suh's lab will examine organic particles made of polyethylene glycol and of chitosan.

"We will use a method called single-particle tracking to capture the dynamics of nanoparticle movement in live cells," Suh said. "Using confocal microscopy, we first create movies of the particles as they transit the cells. Then, we use image-processing software to extract information about how fast they move, what regions they're attracted to, etc. By comparing the movement and fate of the various nanoparticles designed by the multiple research laboratories, we hope to identify correlations between a nanoparticle's physicochemical properties and their intracellular behavior."

At the end of the two-year study, the team hopes to have a database that charts the expected response of particles of a given size, type and chemistry. Ultimately, the hope is to provide researchers with a tool that will help predict how a particular particle is likely to behave. That, in turn, could help researchers speed the development of new treatments for disease.

"We want to understand where the particles go inside the cell, what organelles they associate with, whether or not they associate with any of the cytoskeletal structures and how they move inside the cell," Suh said. "For different applications, you're going to want your particles going to different places. We need to know where they go and how they behave so we can design the right particle for a particular job."

"We are thrilled to get the opportunity to really join forces to study this," Suh said. "It's just the sort of problem that requires the kind of support NIH is providing with ARRA funding. It's a problem that really requires a multidisciplinary, interinstitutional approach."

The project's other principal investigators include Rebekah Drezek and Lon Wilson, both of Rice; Mauro Ferrari, Paolo Decuzzi, David Gorenstein, Jim Klostergaard, Chun Li, Gabriel Lopez-Berestein and Anil Sood, all of the University of Texas Health Science Center at Houston; and Wah Chiu of Baylor College of Medicine.

GO grant funding is provided by the NIH's National Institute of General Medical Sciences. NIH established the GO grant program to support projects that address large, specific research endeavors that are likely to deliver near-term growth and investment in biomedical research and development, public health and health care delivery.

####

Contacts:
Jade Boyd
PHONE: 713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Chemistry

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Quantum Dots/Rods

A new kind of magnetism November 17th, 2023

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project