Home > Press > Nanoparticle protects oil in foods from oxidation, spoilage
![]() |
Dr. Yuan Yao |
Abstract:
Using a nanoparticle from corn, a Purdue University scientist has found a way to lengthen the shelf life of many food products and sustain their health benefits.
Yuan Yao, an assistant professor of food science, has successfully modified the phytoglycogen nanoparticle, a starchlike substance that makes up nearly 30 percent of the dry mass of some sweet corn. The modification allows the nanoparticle to attach to oils and emulsify them while also acting as a barrier to oxidation, which causes food to become rancid. His findings were published in the early online version of the Journal of Agricultural and Food Chemistry.
Oxidation destabilizes oil droplets in emulsified food, degrading and changing the chemical structure of the oil and causing it to go bad. This oxidation happens in a wide range of products, shortening their shelf lives.
"This can be widely used in the food industry, cosmetics and nutritional supplements, any system in which the oxidation of lipids is a concern," Yao said. "The shelf life of a product can be low and the quality of the food can become bad because of the oxidation of the lipids."
In fish oils, for example, the lipid oxidation degrades Omega-3 fatty acids, which are essential in infant development and are thought to help with chronic inflammatory and heart diseases in adults.
Yao was able to modify the surface of phytoglycogen nanoparticle to make it behave like an emulsifier, creating phytoglycogen octenyl succinate, or PG-OS. PG-OS is thicker and denser than commonly used emulsifiers, creating a better defense from oxygen, free radical and metal ions, which cause lipid oxidation.
Yao's findings also showed that e-polylysine, a food-grade polypeptide, can be added to the oil droplets to aid in the protection from oxidation. Polylysine is much smaller than the PG-OS nanoparticles, allowing it to fill in the gaps between PG-OS nanoparticles.
According to Yao's study, PG-OS nanoparticles with e-polylysine significantly increased the amount of time it took for oxidation to ruin the oil droplets, in some cases doubling the shelf life of the model product. Shelf life was tested by warming the emulsifiers and checking for chemical reactions that signal oxidation has occurred.
Yao has filed a provisional patent application for the technology. The Whistler Center for Carbohydrate Research in Purdue's Department of Food Science funded the research.
####
For more information, please click here
Contacts:
Writer
Brian Wallheimer
765-496-2050
Source
Yuan Yao
765-494-6317
Ag Communications
(765) 494-8415
Steve Leer
Copyright © Purdue University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Food/Agriculture/Supplements
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023
Night-time radiative warming using the atmosphere November 17th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |