Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers demonstrate nanoscale X-ray imaging of bacterial cells

Technische Universitaet Muenchen biophysicists (left to right) Dr. Pierre Thibault, Professor Dr. Franz Pfeiffer, and Martin Dierolf are co-authors of the PNAS paper, "Quantitative biological imaging by ptychographic X-ray diffraction microscopy." They collaborated with colleagues at the University of Goettingen and the Swiss Light Source.

Credit: Andreas Battenberg, Technische Universitaet Muenchen.
Technische Universitaet Muenchen biophysicists (left to right) Dr. Pierre Thibault, Professor Dr. Franz Pfeiffer, and Martin Dierolf are co-authors of the PNAS paper, "Quantitative biological imaging by ptychographic X-ray diffraction microscopy." They collaborated with colleagues at the University of Goettingen and the Swiss Light Source. Credit: Andreas Battenberg, Technische Universitaet Muenchen.

Abstract:
Sharper vision for new insights into biological questions, including DNA repair

Researchers demonstrate nanoscale X-ray imaging of bacterial cells

Germany | Posted on December 8th, 2009

An ultra-high-resolution imaging technique using X-ray diffraction is a step closer to fulfilling its promise as a window on nanometer-scale structures in biological samples. In the Proceedings of the National Academy of Sciences, researchers report progress in applying an approach to "lensless" X-ray microscopy that they introduced one year ago. They have produced the first images, using this technique, of biological cells - specifically the intriguing polyextremophile Deinococcus radiourans. Better ability to see nanoscale structures in cells could yield important insights for evolutionary biology and biotechnology. In the case of D. radiourans, for example, it could help to settle questions about whether - or how - the structure of this organism's DNA-bearing nucleoid region accounts for its hardiness against ionizing radiation. Having demonstrated the resolution, reliability, and reproducibility of their technique, the researchers are now working to extend it to three-dimensional imaging of biological cells.

X-ray imaging is best known for its medical applications, such as traditional radiographs and CT scans. Yet the use of X-rays goes far beyond routine imaging. In particular, the very short wavelength of X-ray radiation allows various modes of microscopy that can reach the nanometer resolution. One of the main hurdles to high-resolution X-ray microscopy is the difficulty of producing high-quality X-ray lenses. To overcome these difficulties, so-called "lensless" microscopy methods have emerged in the last decade. A technique developed by researchers now in the biomedical physics group at Technische Universitaet Muenchen (TUM) has shown great promise for ultra-high resolution imaging of materials and life science samples.

This imaging technique, called ptychography, was first introduced in the 1970s for electron diffraction. It consists in measuring full far-field diffraction patterns as a small illumination is scanned on a sample. While its use in electron microscopy is still limited, ptychography has gained tremendous popularity in the X-ray imaging community in the last few years, thanks to the development by Franz Pfeiffer, now chair of the biomedical physics group at TUM, and his team. A critical step in the development of ptychography was published by the team one year ago in Science. The super-resolution capability of the imaging method was successfully demonstrated with a gold test structure.

Now a collaboration of the Pfeiffer group, together with researchers at University of Goettingen and at the Swiss Light Source (Villigen, Switzerland), has gone a step further and produced the first images of biological cells with the same technique.

These results, published in the Proceedings of the National Academy of Sciences, show that lensless X-ray imaging, in particular ptychography, can be used to obtain accurate maps of the electron density forming a biological sample. This type of quantitative measurement is extremely difficult with most other high-resolution techniques currently available. Moreover, biological samples are very fragile and nearly transparent to X-rays, making this type of accurate measurement even more challenging.

The Pfeiffer group is now moving beyond this success and looking into ways of improving the technique further. In particular, the team is aiming at the next milestone: three-dimensional imaging of biological samples.

This research is supported by the German Research Foundation (DFG), the Helmholtz Society, and the German Ministry of Education and Research.

Publications:

K. Giewekemeyer, P. Thibault, S. Kalbfleisch, A. Beerlink, C. M. Kewish, M. Dierolf, F. Pfeiffer, T. Salditt, Quantitative biological imaging by ptychographic x-ray diffraction microscopy, PNAS Early Edition, Proceedings of the National Academy of Sciences of the USA, Dec. 7-11, 2009. www.pnas.org/cgi/doi/10.1073/pnas.0905846107

P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, F. Pfeiffer, High-resolution scanning x-ray diffraction microscopy, Science 321, 379 - 381 (2008). www.sciencemag.org/cgi/content/abstract/321/5887/379

####

About Technische Universitaet Muenchen
Technische Universitaet Muenchen (TUM) is one of Germany's leading universities. It has roughly 440 professors, 6,500 academic and non-academic staff (including those at the university hospital "Rechts der Isar"), and 24,000 students. It focuses on the engineering sciences, natural sciences, life sciences, medicine, and economic sciences. After winning numerous awards, it was selected as an "Elite University" in 2006 by the Science Council (Wissenschaftsrat) and the German Research Foundation (DFG). The university's global network includes an outpost in Singapore. TUM is dedicated to the ideal of a top-level research based entrepreneurial university.

For more information, please click here

Contacts:
Andreas Battenberg

49-892-891-2890
Technische Universitaet Muenchen

Prof. Dr. Franz Pfeiffer
Chair for biomedical physics (E17)
Physics Department TUM
phone: +49 89 289 12552


Dr. Pierre Thibault
Physics Department TUM
phone: +49 89 289 14397

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project