Home > Press > Taking the Heat: Pitt Team Conquers Hurdle to Nano Devices With First Metallic Nanoparticles Resistant to Extreme Heat
Abstract:
Just as a gecko sheds its tail, metal-alloy particles endure 850 degrees Celsius by ditching weaker components, researchers report in Nature Materials.
A University of Pittsburgh team overcame a major hurdle plaguing the development of nanomaterials such as those that could lead to more efficient catalysts used to produce hydrogen and render car exhaust less toxic. The researchers reported Nov. 29 in Nature Materials the first demonstration of high-temperature stability in metallic nanoparticles, the vaunted next-generation materials hampered by a vulnerability to extreme heat.
Götz Veser, an associate professor and CNG Faculty Fellow of chemical and petroleum engineering in Pitt's Swanson School of Engineering, and Anmin Cao, the paper's lead author and a postdoctoral researcher in Veser's lab, created metal-alloy particles in the range of 4 nanometers that can withstand temperatures of more than 850 degrees Celsius, at least 250 degrees more than typical metallic nanoparticles. Forged from the catalytic metals platinum and rhodium, the highly reactive particles work by dumping their heat-susceptible components as temperatures rise, a quality Cao likened to a gecko shedding its tail in self-defense.
"The natural instability of particles at this scale is an obstacle for many applications, from sensors to fuel production," Veser said. "The amazing potential of nanoparticles to open up completely new fields and allow for dramatically more efficient processes has been shown in laboratory applications, but very little of it has translated to real life because of such issues as heat sensitivity. For us to reap the benefits of nanoparticles, they must withstand the harsh conditions of actual use."
Veser and Cao present an original approach to stabilizing metallic catalysts smaller than 5 nanometers. Materials within this size range boast a higher surface area and permit near-total particle utilization, allowing for more efficient reactions. But they also fuse together at around 600 degrees Celsius-lower than usual reaction temperatures for many catalytic processes-and become too large. Attempts to stabilize the metals have involved encasing them in heat-resistant nanostructures, but the most promising methods were only demonstrated in the 10- to 15-nanometer range, Cao wrote. Veser himself has designed oxide-based nanostructures that stabilized particles as small as 10 nanometers.
For the research in "Nature Materials," he and Cao blended platinum and rhodium, which has a high melting point. They tested the alloy via a methane combustion reaction and found that the composite was not only a highly reactive catalyst, but that the particles maintained an average size of 4.3 nanometers, even during extended exposure to 850-degree heat. In fact, small amounts of 4-nanometer particles remained after the temperature topped 950 degrees Celsius, although the majority had ballooned to eight-times that size.
Veser and Cao were surprised to find that the alloy did not simply endure the heat. It instead sacrificed the low-tolerance platinum then reconstituted itself as a rhodium-rich catalyst to finish the reaction. At around 700 degrees Celsius, the platinum-rhodium alloy began to melt. The platinum "bled" from the particle and formed larger particles with other errant platinum, leaving the more durable alloyed particles to weather on. Veser and Cao predicted that this self-stabilization would occur for all metal catalysts alloyed with a second, more durable metal.
Veser and Cao conducted their work with support from the National Energy Technology Laboratory, the lead research and development office for the U.S. Department of Energy's (DOE) Office of Fossil Energy, as well as the DOE's Office of Basic Energy Sciences and the National Science Foundation.
####
About University of Pittsburgh
Founded in 1787 as a small, private school, the Pittsburgh Academy was located in a log cabin near Pittsburgh’s three rivers. In the more than 220 years since, the University has evolved into an internationally recognized center of learning and research.
For more information, please click here
Contacts:
Morgan Kelly
412-624-4356 (office)
412-897-1400 (cell)
Copyright © University of Pittsburgh
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Chemistry
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Environment
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Automotive/Transportation
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Leading the charge to better batteries February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |