Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Future Chips to Have Layers Just Atoms Thick

Dr. Eric Vogel’s review of semiconductor technology’s current state of affairs appears in the new “Nanoscience and Technology: A Collection of Reviews from Nature Journals.” He is an associate professor of materials science and engineering.
Dr. Eric Vogel’s review of semiconductor technology’s current state of affairs appears in the new “Nanoscience and Technology: A Collection of Reviews from Nature Journals.” He is an associate professor of materials science and engineering.

Abstract:
Prof's Paper Examines Measurement Challenge of New Nanoscale Devices

Future Chips to Have Layers Just Atoms Thick

Richardson, TX | Posted on November 19th, 2009

New nanoscale materials and devices are required to replace the silicon transistor that's at the heart of today's semiconductors, but to build these new devices, researchers will have to be able to measure the thickness - if that's the right word - of layers consisting of only a few atoms, according to a UT Dallas researcher.

"The silicon transistor has enabled the integrated circuit technology revolution for over 30 years, but it is reaching practical and fundamental limits due to its extremely small size, now approaching 10 nanometers," said Dr. Eric Vogel, an associate professor of materials science and engineering as well as electrical engineering in the Erik Jonsson School of Engineering and Computer Science at UT Dallas. "The ability to measure the physical, chemical and electronic properties of new materials and devices will be crucial to the research and development of future electronic devices."

Vogel's review of semiconductor technology's current state of affairs appears in the new Nanoscience and Technology: A Collection of Reviews from Nature Journals."

Although all of the Nature journals (such as Nature, Nature Nanotechnology, Nature Physics and Nature Materials) publish review articles every month, and many of those are related to nanotechnology, only a select few have been chosen for this compilation, which one reviewer called "some of the latest and most advanced reports in the field of nanoscience and nanotechnology."

Titled "Technology and Metrology of New Electronic Materials and Devices," Vogel's article describes the technology and measurement challenges of new nanoscale devices and materials being considered for future electronics.

Among the most promising devices and materials being investigated to replace silicon are other semiconductors such as indium, gallium, arsenide and graphene, which consists of a single atomic layer of carbon.

Vogel himself has a wide range of research programs related to future nanoelectronic materials and devices. He leads the University's portion of the Southwest Academy for Nanoelectronics (SWAN), funded by Semiconductor Research Corp. (SRC) through The University of Texas at Austin, which involves six UT Dallas faculty. The program focuses on the materials science, processes, characterization techniques and associated understanding necessary to implement graphene-based devices.

SWAN also funds two of Vogel's graduate students in the area of nanoscale devices for neuromorphic computing, an area that uses the human brain as a model for future low-power computation.

Vogel is also part of a research program funded by numerous agencies (SRC, SEMATECH, the National Science Foundation and the National Institute of Standards and Technology, or NIST) involving the use of compound semiconductors for future transistors, and he is involved in several programs funded by Texas Instruments, one related to nanoscale silicon for biosensors and another related to metal gate electrodes.

Before joining UT Dallas in 2006, Vogel led the CMOS and Novel Devices Group at NIST and was founding director of the institute's Nanofabrication Facility.

####

For more information, please click here

Contacts:
Media Contact
David Moore
UT Dallas
(972) 883-4183

or the Office of Media Relations, UT Dallas
(972) 883-2155

Copyright © University of Texas at Dallas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Chip Technology

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Nanoelectronics

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Tools

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project