Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Chemists describe solar energy progress and challenges, including the 'artificial leaf'

Abstract:
Scientists are making progress toward development of an "artificial leaf" that mimics a real leaf's chemical magic with photosynthesis — but instead converts sunlight and water into a liquid fuel such as methanol for cars and trucks.

Chemists describe solar energy progress and challenges, including the 'artificial leaf'

China, Germany, Japan, the United Kingdom, the United States | Posted on November 8th, 2009

That is among the conclusions in a newly-available report from top authorities on solar energy who met at the 1st Annual Chemical Sciences and Society Symposium. The gathering launched a new effort to initiate international cooperation and innovative thinking on the global energy challenge.

The three-day symposium, which took place in Germany this past summer, included 30 chemists from China, Germany, Japan, the United Kingdom and the United States. It was organized through a joint effort of the science and technology funding agencies and chemical societies of each country, including the U. S. National Science Foundation and the American Chemical Society (ACS), the world's largest scientific society. The symposium series was initiated though the ACS Committee on International Activities in order to offer a unique forum whereby global challenges could be tackled in an open, discussion-based setting, fostering innovative solutions to some of the world's most daunting challenges.

A "white paper" entitled "Powering the World with Sunlight," describes highlights of the symposium and is available along with related materials here.

"The sun provides more energy to the Earth in an hour than the world consumes in a year," the report states. "Compare that single hour to the one million years required for the Earth to accumulate the same amount of energy in the form of fossil fuels. Fossil fuels are not a sustainable resource, and we must break our dependence on them. Solar power is among the most promising alternatives."

The symposium focused on four main topics:

* Mimicking photosynthesis using synthetic materials such as the "artificial leaf"
* Production and use of biofuels as a form of stored solar energy
* Developing innovative, more efficient solar cells
* Storage and distribution of solar energy

The scientists pointed out during the meeting that plants use solar energy when they capture and convert sunlight into chemical fuel through photosynthesis. The process involves the conversion of water and carbon dioxide into sugars as well as oxygen and hydrogen. Scientists have been successful in mimicking this fuel-making process, termed artificial photosynthesis, but now must finds ways of doing so in ways that can be used commercially. Participants described progress toward this goal and the scientific challenges that must be met before solar can be a viable alternative to fossil fuels.

Highlights of the symposium include a talk by Kazunari Domen, Ph.D., of the University of Tokyo in Japan. Domen described current research on developing more efficient and affordable catalysts for producing hydrogen using a new water-splitting technology called "photocatalytic overall water splitting." The technology uses light-activated nanoparticles, each 1/50,000 the width of a human hair, to convert water to hydrogen. This technique is more efficient and less expensive than current technologies, he said.

Domen noted that the ultimate goal of artificial photosynthesis is to produce a liquid fuel, such as methanol, or "wood alcohol." Achieving this goal would fulfil the vision of creating an "artificial leaf" that not only splits water but uses the reaction products to create a more usable fuel, similar to what leaves do.

Among the "take-home messages" cited in the report:

* There's no single best solution to the energy problem. Scientists must seek more affordable, sustainable solutions to the global energy challenge by considering all the options.
* Investing in chemistry is investing in the future. Strong basic research is fundamental to realizing the potential of solar energy and making it affordable for large-scale use.
* Society needs a new generation of "energy scientists" to explore new ways to capture, convert, and store solar energy.

"The meeting was an experiment worth trying," said Teruto Ohta, executive director of the Chemical Society of Japan.

Conference organizers expressed hope that the symposium will be the first of several to tackle "the global challenges of the 21st century and the indispensible role that the chemical sciences play in addressing these issues," said Klaus Mullen, president of the German Chemistry Association.

"Building on the success of this first symposium, we're now gearing up for the future, convening top chemical scientists to address other, equally pressing global challenges," said Julie Callahan of the ACS Office of International Activities and principal investigator on the project. "It is an exciting time to be a chemist!"

####

About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 154,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
Michael Bernstein

202-872-6042

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Chemistry

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Investments/IPO's/Splits

Daikin Industries becomes OCSiAl shareholder July 27th, 2021

180 Degree Capital Corp. Reports +14.2% Growth in Q1 2021, $10.60 Net Asset Value Per Share as of March 31, 2021, and Developments From Q2 2021 May 11th, 2021

INBRAIN Neuroelectronics raises over €14M to develop smart graphene-based neural implants for personalised therapies in brain disorders March 26th, 2021

180 Degree Capital Corp. Issues Second Open Letter to the Board and Shareholders of Enzo Biochem, Inc. March 26th, 2021

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Energy

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Automotive/Transportation

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Leading the charge to better batteries February 28th, 2025

Events/Classes

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project