Home > News > Betting on a Metal-Air Battery Breakthrough
November 8th, 2009
Betting on a Metal-Air Battery Breakthrough
Abstract:
A spinoff from Arizona State University says it can develop a metal-air battery that dramatically outperforms the best lithium-ion batteries on the market, and now it has the funding it needs to prove it.
The U.S. Department of Energy last week awarded a $5.13-million research grant to Scottsdale, AZ-based Fluidic Energy toward development of a metal-air battery that relies on ionic liquids, instead of an aqueous solution, as its electrolyte.
Friesen is also cautious when talking about the other key component of Fluidic Energy's research: a metal electrode structure that overcomes the problem of dendrite formation. These branch-like structures can grow on, for example, a zinc electrode and cause a metal-air battery to short-circuit. Dendrite formation happens in rechargeable batteries when the chemical reactions are reversed, limiting the number of charging cycles. Fluidic Energy has developed an electrode scaffold with multi-modal porosity, meaning it has a range of pore sizes down to as small as 10 nanometers. The scaffold surrounds the metal, in this case zinc, and can prevent dendrites that form during charging.
Source:
technologyreview.com
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Possible Futures
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Energy
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Automotive/Transportation
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||