Home > Press > Hard Rain: Pitt-led Researchers Create Nano-Particle Coating to Prevent Freezing Rain Buildup on Roads, Power Lines
![]() |
| An aluminum plate glazed with Gao's superhydrophobic coating (left) repelling the supercooled water. For the uncoated plate (right), the water freezes on contact and ice accumulates. (Credit: Image courtesy of University of Pittsburgh) |
Abstract:
Inspired by water-resistant lotus leaves, the Pitt-developed solution repels freezing rain and provides the first evidence of anti-icing ability in superhydrophobic coatings, team reports in "Langmuir"
Preventing the havoc wrought when freezing rain collects on roads, power lines, and aircrafts could be only a few nanometers away. A University of Pittsburgh-led team demonstrates in the Nov. 3 edition of "Langmuir" a nanoparticle-based coating developed in the lab of Di Gao, a chemical and petroleum engineering professor in Pitt's Swanson School of Engineering, that thwarts the buildup of ice on solid surfaces and can be easily applied.
The paper, by lead author and Pitt doctoral student Liangliang Cao, presents the first evidence of anti-icing properties for a burgeoning class of water repellants-including the Pitt coating-known as superhydrophobic coatings. These thin films mimic the rutted surface of lotus leaves by creating microscopic ridges that reduce the surface area to which water can adhere. But the authors note that because ice behaves differently than water, the ability to repulse water cannot be readily applied to ice inhibition. Cao's coauthors include Gao, Jianzhong Wu, a chemical engineering professor at the University of California at Riverside, and Andrew Jones and Vinod Sikka of Ross Technology Corporation of Leola, Pa.
The team found that superhydrophobic coatings must be specifically formulated to ward off ice buildup. Gao and his team created different batches made of a silicone resin-solution combined with nanoparticles of silica ranging in size from 20 nanometers to 20 micrometers, at the largest. They applied each variant to aluminum plates then exposed the plates to supercooled water (-20 degrees Celsius) to simulate freezing rain.
Cao writes in "Langmuir" that while each compound containing silica bits of 10-or-fewer micrometers deflected water, only those with silica pieces less than 50 nanometers in size completely prevented icing. The minute surface area of the smaller fragments means they make minimal contact with the water. Instead, the water mostly touches the air pockets between the particles and falls away without freezing. Though not all superhydrophobic coatings follow the Pitt recipe, the researchers conclude that every type will have a different particle-scale for repelling ice than for repelling water.
Gao tested the coating with 50-nanometer particles outdoors in freezing rain to determine its real-world potential. He painted one side of an aluminum plate and left the other side untreated. The treated side had very little ice, while the untreated side was completely covered. He produced similar results on a commercial satellite dish where the glossed half of the dish had no ice and the other half was encrusted.
A video available on Pitt's Web site shows an aluminum plate glazed with Gao's superhydrophobic coating (left) repelling the supercooled water. For the uncoated plate (right), the water freezes on contact and ice accumulates. The video can be accessed at www.pitt.edu/news2009/ice.html
The "Langmuir" paper is available on Pitt's Web site at www.pitt.edu/news2009/DiGao.pdf
####
About University of Pittsburgh
Founded in 1787 as a small, private school, the Pittsburgh Academy was located in a log cabin near Pittsburgh’s three rivers. In the more than 220 years since, the University has evolved into an internationally recognized center of learning and research.
For more information, please click here
Contacts:
Morgan Kelly
412-624-4356 (office)
412-897-1400 (cell)
Copyright © University of Pittsburgh
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025
Chemistry
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Possible Futures
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Discoveries
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Automotive/Transportation
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Aerospace/Space
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||