Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Novel polymer delivers genetic medicine, allows tracking

Researchers at Virginia Tech and at the University of Cincinnati designed novel polymeric beacons capable of delivering plasmid DNA into mammalian cells. This image shows a deconvoluted micrograph of a HeLa cell transfected with DNA-polymer beacon complexes. The DNA is labeled with fluorescein isothiocyanate and appears green in the image. Eu3+ luminescence from the polymeric beacon appears red. Yellow pixels can be qualitatively used to visualize regions of co-localization of DNA and polymer beacon. The DNA and polymer beacon signals are overlaid with the DIC image to show contrast and morphology of the cell (scale bar = 20 micrometers).

Credit: Image provided by Joshua Bryson.
Researchers at Virginia Tech and at the University of Cincinnati designed novel polymeric beacons capable of delivering plasmid DNA into mammalian cells. This image shows a deconvoluted micrograph of a HeLa cell transfected with DNA-polymer beacon complexes. The DNA is labeled with fluorescein isothiocyanate and appears green in the image. Eu3+ luminescence from the polymeric beacon appears red. Yellow pixels can be qualitatively used to visualize regions of co-localization of DNA and polymer beacon. The DNA and polymer beacon signals are overlaid with the DIC image to show contrast and morphology of the cell (scale bar = 20 micrometers).

Credit: Image provided by Joshua Bryson.

Abstract:
Theresa M. Reineke, associate professor of chemistry in the College of Science, and colleagues in her lab at Virginia Tech and at the University of Cincinnati have developed a new molecule that can travel into cells, deliver genetic cargo, and packs a beacon so scientists can follow its movements in living systems.

Novel polymer delivers genetic medicine, allows tracking

Blacksburg, VA | Posted on October 6th, 2009

"My lab has been trying to find a way to deliver genetic-based drugs into cells." said Reineke.

Scientists worldwide are using information from the human genome project as an approach to treat disease. Reineke's focus is cancer and cardiovascular disease. "Traditional drugs are aimed at treating disease at the protein level," she said. "Genetic drugs - such as those that can alter or control gene expression - aim to treat disease at the genetic level and have the added benefit of being more specific for their medicinal target." An example would be a genetic message that would arrest tumor growth.

A challenge has been that DNA and RNA drugs - pieces of genetic code that store information and instructions - cannot diffuse through the cell the way traditional small molecule drugs can. "We needed a vehicle to carry them into cells," said Reineke. One such vehicle has been engineered viruses. Reineke's group has been working on a more elegant solution. Their discovery is the topic of the PNAS article.

The scientists created novel polycations. A polycation is a polymer chain with positive charges, which is not too unusual. DNA itself is a polyanion, a polymer with negative charges. However, the Reineke Group's supramolecule has options. It contains chemistry (oligoethyleneamines) that binds and compacts nucleic acids - pieces of the DNA - into nanoparticles. It also incorporates a group of rare-earth elements known as lanthanides. The repackaged DNA is protected from damage as it travels into the cells and the lanthanides allow visualization of the delivery into cells.

"In our experiments, these delivery beacons provide the ability to track DNA delivery into living cells," said Reineke. "They provide the potential for tracking genetic therapies within the living body," she said.

At the nanometer or cellular scale, the researchers are able to track the polymers using sensitive microscopes, which capture the nanoparticle luminescence. At the sub-millimeter or tissue scale, magnetic resonance imaging (MRI) is used to see where the nanoparticles are going.

"This ability to track the movement and delivery of a gene-based drug provides an opportunity to understand the mechanism of delivery and monitor efficacy in real time, so that we can develop better materials for delivering genetic therapeutics and ultimately better treatments," Reineke said.

The research was published in the October 6, 2009 edition and the September 23 online edition of the Proceedings of the National Academy of Sciences (PNAS), in the article "Polymer beacons for luminescence and magnetic resonance imaging of DNA delivery," by Joshua M. Bryson of Cincinnati, a recent student with the Macromolecules and Interfaces Institute (MII) at Virginia Tech, who received his Ph.D. in organic chemistry in August 2009 and is now principal scientist at Techulon Inc.; Katye M. Fichter, recent biochemistry graduate from the University of Cincinnati now a postdoctoral fellow at Oregon Health and Science University; Wen-Jang Chu, research assistant professor, and Jing-Huei Lee, associate professor, both of the University of Cincinnati Center for Imaging Research; Jing Li, a postdoctoral associate with MII; Louis A. Madsen, assistant professor of chemistry with MII; Patrick M. Mclendon of Cincinnati, a Ph.D. student in chemistry in Reineke's group, and Reineke. An abstract is available at www.pnas.org/content/early/2009/09/23/0904860106.abstract

The research was supported by Reineke's Alfred P. Sloan Research Fellowship and by the Camille Dreyfus Teacher-Scholar Awards Program.

Dr. Reineke has just been awarded the NIH Director's New Innovator Award (nihroadmap.nih.gov/newinnovator/index.asp). Learn more about her research at: www.reinekegroup.org

####

For more information, please click here

Contacts:
Susan Trulove

540-231-5646

Copyright © Virginia Tech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project