Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Research could boost solar cell efficiency, open door for advanced electronics: Research could boost solar cell efficiency, open door for advanced electronics

Abstract:
A branch of nanotechnology that showed great initial promise nearly 20 years ago could get a fresh look because researchers at University of Louisville, Purdue University and Honda Research Institute USA Inc. have created a better "recipe" for making microscopically tiny structures with more predictable, desirable properties - and potential for advances such as enhancing the efficiency of solar cells for energy use.

Research could boost solar cell efficiency, open door for advanced electronics: Research could boost solar cell efficiency, open door for advanced electronics

Louisville, KY | Posted on October 2nd, 2009

The research findings, initiated and funded by Honda, are set to be published Oct. 2 in Science, a publication of the American Association for the Advancement of Science.

Previously, scientists had grown carbon nanotubes but couldn't control whether they would occur as one of two types - semiconducting or metallic, for different uses - because the process was random. The metallic nanotubes are more useful as building blocks that connect other nanostructures or for windows for solar cells or other devices with optical and electrical qualities.

"This is the first report that demonstrates that we can control fairly systematically whether carbon nanotubes are metallic or semiconducting," said Avetik Harutyunyan, the Honda Research Institute principal scientist who led the research. "We have a 91 percent success rate of producing metallic nanotubes."

Honda researchers discovered they could control whether the carbon nanotubes become metallic or semiconducting by using either argon or helium as "carrier gases" during the process. Researchers at UofL used the technique to make large quantities of nanotubes and precisely measure whether they were metallic or semiconducting. Purdue researchers took high-resolution images with a transmission electron microscope to help determine why the process worked.

Lead UofL researcher Gamini Sumanasekera, an associate professor of physics, said he hoped the findings will renew interest in the field. Carbon nanotubes may replace more commonly used materials for purposes that require electrical conductivity and good light transmission, he said.

Besides Harutyunyan and Sumanasekera, the paper's authors were Gugang Chen, Elena Pigos and Oleg Kuznetsov, Honda; Tereza Paronyan and Kapila Hewaparakrama, UofL; and Seung Min Kim, Dmitri Zakharov and Eric Stach, Purdue.

####

For more information, please click here

Contacts:
Sumanasekera
502-852-0930

or
David Iida

Copyright © University of Louisville

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project