Home > News > After the Transistor, a Leap Into the Microcosm
September 9th, 2009
After the Transistor, a Leap Into the Microcosm
Abstract:
Gaze into the electron microscope display in Frances Ross's laboratory here and it is possible to persuade yourself that Dr. Ross, a 21st-century materials scientist, is actually a farmer in some Lilliputian silicon world.
Dr. Ross, an I.B.M. researcher, is growing a crop of mushroom-shaped silicon nanowires that may one day become a basic building block for a new kind of electronics. Nanowires are just one example, although one of the most promising, of a transformation now taking place in the material sciences as researchers push to create the next generation of switching devices smaller, faster and more powerful than today's transistors.
Source:
nytimes.com
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Possible Futures
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Chip Technology
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Profiles
Russia’s Nano-enabled Products Market to Witness Massive Growth February 8th, 2011
Adept Technology Announces Orders for Over $600K from Chinese Partner January 18th, 2011
Nanostart-held ItN Nanovation Receives Major Follow-on Order in Saudi Arabia November 29th, 2010
Homegrown Companies Developing Batteries for Clean Energy Storage November 2nd, 2010
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |