Home > Press > A Partnership for improved Diagnostics
Chip with insight: silicon photomultipliers could help to locate tumours in the body more accurately - without the disadvantages and side effects of other procedures. Credit: MPI for Physics / Masahiro Teshima Image: MPI for Physics / Masahiro Teshima |
Abstract:
Max Planck Innovation and PerkinElmer conclude a licensing agreement for highly efficient detectors for medical technology
In future, it will be possible to detect malignant tumors more rapidly and more reliably - with instruments that combine magnetic resonance tomography and positron emission tomography, two conventional methods in medical diagnostics. The US company PerkinElmer Inc. develops detectors for such instruments, and will be using detector technology developed by astronomers at the Max Planck Institute of Physics for this application. Max Planck Innovation has now concluded a licensing agreement with PerkinElmer that grants the company the exclusive right to use these silicon photomultipliers (SiPM).
Medical diagnosis is often a matter of weighing up the options. This begins with the selection of the right method: Although magnetic resonance tomography (MRT) supplies pinpoint sharp images of organs, bones and connective tissue, it provides no information on the metabolic activity in individual regions. An MRT is therefore not much use when looking for tumors which reveal themselves by their particularly high sugar metabolism. But this is exactly what is detected by positron-emission tomography (PET), although it does not disclose the exact locations of the active cells. Computer tomography, on the other hand, solves this dilemma, but involves additional X-ray exposure for patients.
Detectors used by the Max Planck physicists to detect cosmic gamma radiation are now facilitating the combination of PET and MRT in one instrument. The detectors that positron-emission tomographs normally employ to count photons are not suitable for such a combination because the MRT's strong magnetic field thwarts the detection of photons. Consequently, the first integrated PE and MR tomographs operate with the aid of avalanche photodiodes (APD). These have a much lower sensitivity, are slower and consume more power than the silicon photomultipliers which were originally developed by Russian researchers at the Moscow State Engineering Physics Institute, and have finally been developed further for practical applications by the group of Max Planck researchers headed by Masahiro Teshima and Razmik Mirzoyan.
"We are convinced that the SiPM technology will be very useful in medicine and environmental technology," says Michael Ersoni, Vice President of PerkinElmer and General Manager of the global detection business. PerkinElmer and Max Planck Innovation GmbH, the technology transfer company of the Max Planck Society, have concluded an exclusive licensing agreement for the silicon photomultipliers. However, these highly sensitive detectors could be used wherever it is important to detect the minutest quantities of light. In addition to the PET diagnostic application, Ersoni gives analytical fluorescence measurements as a further example.
"PerkinElmer is the world's leading company for photodetectors and therefore the ideal industrial partner to enable us to introduce the silicon photomultipliers into medical applications and analytical applications for the environment," says Bernd Ctortecka, patent and licensing manager at Max Planck Innovation: "The global operator commands a strong market position, the necessary development capacity and the experience to introduce the technology into a market that is currently undergoing rapid development."
####
About Max Planck Gesellschaft
The research institutes of the Max Planck Society perform basic research in the interest of the general public in the natural sciences, life sciences, social sciences, and the humanities. In particular, the Max Planck Society takes up new and innovative research areas that German universities are not in a position to accommodate or deal with adequately. These interdisciplinary research areas often do not fit into the university organization, or they require more funds for personnel and equipment than those available at universities. The variety of topics in the natural sciences and the humanities at Max Planck Institutes complement the work done at universities and other research facilities in important research fields. In certain areas, the institutes occupy key positions, while other institutes complement ongoing research. Moreover, some institutes perform service functions for research performed at universities by providing equipment and facilities to a wide range of scientists, such as telescopes, large-scale equipment, specialized libraries, and documentary resources.
For more information, please click here
Contacts:
Bernd Ctortecka PhD
Max Planck Innovation, Munich
Tel.: + 49 89 29 09 19-20
Copyright © Max Planck Gesellschaft
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||