Home > Press > New material for nanoscale-computer chips
![]() |
Researchers cross organic and non-organic nano wires like Mikado sticks and thereby make nanoscale prototype computer electronics. Image by Asmus Dohn. |
Abstract:
New data from Chinese-Danish collaboration shows that organic nanoscale wires could be an alternative to silicon in computer chips. The discovery has just been published in the respected scientific journal, Advanced Materials.
Nanochemists from the Chinese Academy of Sciences and the Nano-Science Center, Department of Chemistry have developed nanoscale electric contacts out of organic and inorganic nanowires. In the contact they have crossed the wires like Mikado sticks and coupled several contacts together in an electric circuit. In this way they have produced prototype computer electronics on the nanoscale.
Alternative to silicon computers
Today the foundation of our computers, mobile phones and other electronic apparatus is silicon transistors. A transistor is in principal an on- and off- contact and there are millions of tiny transistors on every computer chip. However, we are reaching the limit for how small we can make transistors out of silicon.
We already use various organic materials in, for example, flat screens, such as OLED (Organic Light Emitting Diode). The new results show how small and advanced devices made of organic materials can become. Thomas Bjørnholm, Director of the Nano-Science Center, Department of Chemistry at University of Copenhagen explains:
"We have succeeded in placing several transistors consisting of nanowires together on a nano device. It is a first step towards realisation of future electronic circuitry based on organic materials - a possible substitute for today's silicon-based technologies. This offers the possibility of making computers in different ways in the future."
Danish-Chinese nanoelectronics
The researchers have used organic nanowires combined with the tin oxide nanowires in a so-called hybrid circuit. As in a Mikado game, the nanowires cross in a device consisting of 4-6 active transistor moieties. The devices have a low operational current, high mobility and good stability and that is essential in order for the material to be able to compete with silicon.
Professor Wenping Hu, Chinese Academy of Sciences is excited over the results:
"This work is the first significant result of our collaboration with the researchers from the Nano-Science Center. It is a good starting point for our new Danish-Chinese research centre for molecular nano-electronics and it underlines the fact that we can complement each other and that together we can achieve exciting and important results."
####
About University of Copenhagen
With over 37,000 students and more than 7,000 employees, the University of Copenhagen is the largest institution of research and education in Denmark. The purpose of the University – to quote the University Statute – is to ’conduct research and provide further education to the highest academic level’.
Approximately one hundred different institutes, departments, laboratories, centres, museums, etc., form the nucleus of the University, where professors, lecturers and other academic staff, as well as most of the technical and administrative personnel, carry out their daily work, and where teaching takes place.
These activities take place in various environments ranging from the plant world of the Botanical Gardens, through high-technology laboratories and auditoriums, to the historic buildings and lecture rooms of Frue Plads and other locations.
On 1 January 2007, the University merged with The Royal Veterinary and Agricultural University and The Danish University of Pharmaceutical Sciences. The two universities are now faculties at the University of Copenhagen.
For more information, please click here
Contacts:
University of Copenhagen Contact:
Communications Division
DK-1017 Copenhagen K
Nørregade 10, P.O. Box 2177
+45 35 32 42 61
Professor Thomas Bjørnholm
+45 35 32 18 35
Communication Officer
Gitte Frandsen
+45 28 75 04 58
Copyright © University of Copenhagen
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Chip Technology
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Nanoelectronics
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |