Home > News > Cagey Solution: Will Nano Traps Make Geothermal Power Earthquake-Safe?
July 20th, 2009
Cagey Solution: Will Nano Traps Make Geothermal Power Earthquake-Safe?
Abstract:
Scientists could use nano "cages" to increase the heat-storing efficiency of shallow, low-temperature geothermal wells, thereby decreasing the need for deeper, more earthquake-prone ones.
Earth's molten mantle is a potentially inexhaustible source of energy that could meet 10 percent of our nation's energy needs, but cost and safety concerns have hampered the growth of geothermal energy. Now, researchers have announced plans to test a more efficient way to tap into safer, low-temperature geothermal stores using nanotechnology.
So, environmental engineer Peter McGrail and his colleagues at the U.S. Department of Energy's (DoE) Pacific Northwest National Laboratory are proposing a way to change that.
Eight months ago, his team made a surprising discovery during their work on capturing and storing carbon. They were working with cagelike nanostructures that could trap carbon dioxide when they learned that they could also increase the heat-storing capacity of alkanes by a factor of 20. "That discovery led us to the idea of trying to apply this on the geothermal basis," McGrail says.
In theory, he explains, this fluid could allow a 30 to 40 percent increase in the efficiency of power production from low-temperature geothermal sources. McGrail and his team christened the structures "metal-organic heat carriers," or MOHCs, and with $1.2 million in funding from the DoE, the lab will test electricity generation using different blends on a lab bench over the next three years.
Source:
scientificamerican.com
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Environment
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |