Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Expanding Quantum Dot Utility in Cancer Diagnosis and Treatment

Abstract:
Quantum dots (QDs), nanoparticles that shine with extraordinary brightness when excited by light energy, have shown promise as new tools for detecting cancer at its earliest appearance, but concerns about potential toxicities have limited their clinical development. Researchers at the University of Buffalo may have found an answer to this limitation with their development of a new way to create QDs. Their work comes at an opportune time, because a team of investigators from the University of Texas at Arlington (UTA) has shown that QDs can function as nanoscale thermometers to guide the numerous nanoparticle-based thermal therapies being developed to treat cancer.

Expanding Quantum Dot Utility in Cancer Diagnosis and Treatment

Bethesda, MD | Posted on June 27th, 2009

Paras Prasad, Ph.D., principal investigator of the National Cancer Institute Cancer Nanotechnology Platform Partnership based at the University of Buffalo, has been developing a variety of methods for creating novel types of QDs. His most recent work, published in the journal Small, has yielded biocompatible QDs that produce no toxic effects for more than 3 months after injection. The new QDs contain a cadmium sulfide core surrounded by a thin shell of cadmium, selenium, and tellurium similar to standard QDs. However, as a finishing touch, the researchers added a rugged, water-repellant coating that prevents any of the potentially toxic metals in the QDs from leaching into the body. This coating also contains chemical groups to which targeting agents or drugs can be attached.

When these QDs are injected into mice, Dr. Prasad and his colleagues were able to image these exceedingly bright nanoparticles using near-infrared spectroscopy and determine where they accumulated in the body. Unlike standard QDs, these coated nanoparticles were less likely to accumulate in the liver and spleen. Further examination of tissues removed from the mice 100 days after injection showed that there was no tissue or cellular damage associated with QD accumulation. The researchers also report that the injected animals showed nothing but normal behavior over the duration of the study.

Meanwhile, Bumsoo Han, Ph.D., and UTA colleagues report in the Annals of Biomedical Engineering that they have used cadmium telluride/zinc sulfide QDs as nanoscale thermometers capable of measuring local changes in temperature in real time. The goal of this work is to create a measurement tool that will enable oncologists to determine whether thermal anticancer therapy is producing cell-killing temperatures throughout each treated tumor.

The operating principle for this work is that QD emissions are sensitive to the local temperature. When QDs are administered to a target tissue prior to thermal therapy, they can give a pretherapeutic reading of a temperature surrounding a tumor. During therapy, QD emissions then can be monitored to ensure that all of a tumor, including its outer edges, reach a temperature that ensures cell death. Indeed, the investigators showed that the QDs can produce a temperature map with spatial resolution that can clearly reveal those regions of tissue that have become hot enough to produce cell death.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Biocompatible near-infrared quantum dots as ultrasensitive probes for long-term in vivo imaging applications.”

View abstract - “Development of quantum dot-mediated fluorescence thermometry for thermal therapies.”

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Quantum Dots/Rods

A new kind of magnetism November 17th, 2023

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project