Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > NanoBioTech Institute Sends Hopkins Senior To Belgium For Summer Research

Michael Keung
Michael Keung

Abstract:
This summer, Michael Keung, a rising senior in Chemical and Biomolecular Engineering at Johns Hopkins Whiting School of Engineering, will participate in the Institute for NanoBioTechnology (INBT) International Research Experience for Students (IRES) program. INBT's IRES program, funded by the National Science Foundation, allows students to collaborate with researchers from Hopkins and The Inter-University MircroElectronics Centre (IMEC) in Leuven, Belgium. Students work at IMEC's world-class microfabrication facility and learn to design, fabricate and test chip-based platforms and integrated microelectronic systems for biomedical applications. The goal of the program is to help students gain a broader, global perspective of science and technology.

NanoBioTech Institute Sends Hopkins Senior To Belgium For Summer Research

Baltimore, MD | Posted on June 24th, 2009

Michael is working on a bachelor's degree in chemical and biomolecular engineering (ChemBE) with a concentration in interfaces and nanotechnology with a minor in entrepreneurship and management. Before he left for Belgium on May 30, he answered a few questions about how he became involved in INBT's IRES program. While abroad, Michael will keep a blog so that everyone back home can read about his experiences at IMEC and in Europe. To read Michael's blog, "Summer 2009 at IMEC," go to www.keungatimec.blogspot.com.

1. Why did you want to participate in INBT's IRES program?

I think it is safe to say that a large majority of students consider Hopkins to be extremely, if not overly, rigorous. Any opportunity to take a break from school work or getting off campus is welcomed with wide, open arms. After my sophomore year at JHU, I was strongly considering some type of travel abroad, whether it was taking classes or doing an internship, to get a break from Hopkins and Baltimore.

I first heard about INBT's IRES program from an email distributed from my principal investigator, assistant professor of chemical and biomolecular engineering David Gracias (an affiliated faculty member of INBT). I wanted to be a part of this program because it provides an amazing opportunity to further one's education, both academically and personally. IMEC has world class facilities and has been a leader in nanoelectronics and nanobiotechnology. I can't imagine any better way to spend a summer than traveling around Europe and working in such a renowned facility as IMEC.

2. What do you hope to learn about nanobiotechnology, business, research etc.?

I hope to learn new fabrication techniques and ways of perfecting the current ones I am already familiar with. By bringing these back to the Gracias lab, perhaps we will be able to improve our own fabrication methods. Additionally, I hope to become exposed to the biological side of nanotechnology. As a ChemBE concentrating in interfaces and nanotechnology, my exposure to the biological aspect is very limited. With this research opportunity, I hope to broaden my academic scope.

3. How did you prepare yourself academically and personally for your trip?

Coming from the Gracias lab, I already have a lot of experience with microfabrication. The processes that we use to fabricate our structures are similar to the techniques used over at IMEC. IMEC, however, has very large facilities and equipment with greater resolution than what we have at our disposal at Hopkins. My research background with the Gracias lab has prepared me academically for this trip.

Personally, one thing I am definitely taking with me are Dutch and French dictionaries. I have a feeling that I will need it, considering I have zero background in either language. The whole language barrier problem should be fun trying to get around, albeit frustrating.

4. What skills do you hope to gain from this research trip?

I hope to gain skills in perfecting the fabrication techniques employed in the Gracias lab. By integrating the experience I obtain at IMEC with our lab here at Hopkins, perhaps we may be able to fabricate new types of micro and nanostructures.

5. What research project will you be working on?

The project will be a collaborative effort between the Gracias lab and IMEC. The Gracias lab has experience in fabricating 3D self-assembled structures ranging from 100 nanometers to several millimeters. The group I'll be working with over at IMEC has experience in fabricating plasmonic nanostructures that are sensitive towards the attachment of biomolecules. Together, we will be working on fabricating nanocubes with plasmonic nanostructure cavities on each face of a cube. This will allow us to demonstrate directional sensitivity in three dimensions on the nanoscale and have importance in surface enhanced raman spectroscopy (SERS) experiments in fluids or even in vivo.

6. What qualities do you think you bring to this research trip?

Personally, I will be bringing the cube fabrication experience from our lab and combining it with the resources over at IMEC to fabricate new types of plasmonic nanostructures.

7. What do you think will be the most challenging part about your trip?

One aspect of this research experience that will be challenging to acclimate to is the different equipment on the IMEC campus. When working with the instruments in the Gracias lab, you get familiar with the workings and intricacies of the equipment. I do not know about IMEC specifically, but at some companies, technicians operate each specific piece of equipment, such that one individual never fabricates a wafer from beginning to end. Although getting acquainted with new procedures will be challenging, they will have to be overcome.

Additionally, I think being submerged in a new country and culture will be very intimidating. I have no experience with the Dutch or French languages, so a language barrier will definitely be present between me and some individuals. Also, I have never traveled to Europe, so I am aware that I will probably experience a culture shock in terms of traditions and lifestyle.

8. What do expect will be the most fun about your trip?

I think I will have a lot of fun being exposed to the different fabrication techniques and equipment over at IMEC. Plenty of researchers over there are leaders in their field. It will be a very pleasurable experience to be working and learning side-by-side with them.

Not to forget the fact that it is Europe, I will definitely be traveling around to different countries on the weekends. I have already planned the cities I am going to visit along with the train routes I will need to take to get there. Although I will be working at IMEC on the weekends, I will be pseudo-backpacking around Europe during my free time.

9. What do your family and friends think about you going on this trip?

I am very excited and grateful to INBT for being given this great opportunity to travel to Europe and perform research at IMEC. My friends and family are very excited for me, most wishing that they could join me. Everyone has been very supportive of this opportunity and I am incredibly excited to begin my journey.

10. Anything else?

This is the first year of the IMEC program, and I know that it took a lot of work to get it off the ground. I would like to thank Thomas Fekete, Ashanti Edwards, and everyone associated with the program, I now cannot wait for it to begin.

####

About Johns Hopkins Institute for NanoBioTechnology
The Johns Hopkins Institute for NanoBioTechnology (INBT) at Johns Hopkins University brings together more than 175 researchers from the Bloomberg School of Public Health, Krieger School of Arts and Sciences, School of Medicine, Applied Physics Laboratory, and Whiting School of Engineering to create new knowledge and new technologies at the interface of nanoscience and medicine.

For more information, please click here

Contacts:
Johns Hopkins Institute for NanoBioTechnology
3400 North Charles Street
Baltimore, MD 21218


Phone: (410) 516-3423
Fax: (410) 516-2355

Copyright © Johns Hopkins Institute for NanoBioTechnology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project