Home > News > Skyscraper approach to nanoelectronics
June 5th, 2009
Skyscraper approach to nanoelectronics
Abstract:
Scientists based at the University of Georgia, US, have grown conjugated polymer brushes directly onto monolayers, producing films with thicknesses less than 42 nanometres. This is a significant breakthrough for nanotechnology as existing techniques for creating electronics on the nanoscale are reaching their limits.
Previous attempts to grow conjugated polymers on monolayers have had limited success. Using a modified Kumada-type catalyst-transfer polycondensation, Jason Locklin and his team grew polyphenylene and polythiophene brushes, from aryl Grignard monomers, on gold monolayers. They analysed the polymer brushes using cyclic voltammetry, polarization modulation-infrared reflection-adsorption spectroscopy and atomic force microscopy. 'This surface-initiated polymerisation technique allows one to create conjugated polymer films in a controlled fashion,' Locklin comments. The technique 'allows for a high density of functional groups to be obtained in a limited area. This has been called the skyscraper approach.'
Source:
rsc.org
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Nanoelectronics
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |