Home > Press > Revolutionising the diagnosis of serious disease
Abstract:
Revolutionary ultrasonic nanotechnology that could allow scientists to see inside a patient's individual cells to help diagnose serious illnesses is being developed by researchers at The University of Nottingham.
The new technique would utilise ultrasound technology — more commonly used to look at whole bodies such as fetal scanners — to look inside cells. The components of the new technology would be many thousand times smaller than current systems.
The technology would be tiny enough to allow scientists to see inside and image individual cells in the human body, which would further our understanding of the structure and function of cells and could help to detect abnormalities to diagnose serious illnesses such as some cancers.
The work by the Ultrasonics Group in the Division of Electrical Systems and Optics has been deemed so potentially innovative it has recently been awarded a £850,000 five-year Platform Grant by the Engineering and Physical Sciences Research Council (EPSRC).
Ultrasound refers to sound waves that are at a frequency too high to be detected by the human ear, typically 20 kHz and above. Medical ultrasound uses an electrical transducer the size of a matchbox to produce sound waves at much higher frequencies, typically around 100-1000 times higher to probe bodies.
The Nottingham researchers are aiming to produce a miniaturised version of this technology, with transducers so tiny that you could fit 500 across the width of one human hair which would produce sound waves at frequencies a thousand times higher again, in the GHz range.
Dr Matt Clark of the Ultrasonics Group, said: "By examining the mechanical properties inside a cell there is a huge amount that we can learn about its structure and the way it functions. But it's very much a leap into the unknown as this has never been achieved before.
"One of the reasons for this is that it presents an enormous technical challenge. To produce nano-ultrasonics you have to produce a nano-transducers, which essentially means taking a device that is currently the size of a matchbox and scaling it down to the nanoscale. How do you attach a wire to something so small?
"Our answer to some of these challenges is to create a device that works optically — using pulses of laser light to produce ultrasound rather than an electrical current. This allows us to talk to these tiny devices."
The new technology may also allow scientists to see objects even smaller than optical microscopes and be so sensitive they may be able to measure single molecules.
In addition to medical applications, the new technology would have important uses as a testing facility for industry to assess the integrity and quality of materials and to detect tiny defects which could have an impact on performance or safety.
Ultrasonics is currently used in applications such as testing landing gear components in the aero industry for cracks and damage which may not be immediately visible or may develop with use.
The group is also looking at developing new inspection techniques for inspecting engineering metamaterials — advanced composites that are currently impossible to inspect with ultrasound. These materials offer huge performance advantages allowing radical new engineering but can't be widely used because of the difficulty of inspection.
Dr Clark added: "We are also applying our technology to nanoengineering because we have to match the enormous growth in nanotechnology with techniques to inspect the nanoworld. As products and their components become ever tinier, the testing facilities for those also need to be scaled down accordingly.
In NEMS (nanoelectromechanical) and MEMS (microelectromechanical) based machines there is an increasing demand for testing facilities which offer the same capabilities as those for real-world sized devices."
####
About University of Nottingham
The University of Nottingham is ranked in the UK's Top 10 and the World's Top 100 universities by the Shanghai Jiao Tong (SJTU) and Times Higher (THE) World University Rankings.
More than 90 per cent of research at The University of Nottingham is of international quality, according to RAE 2008, with almost 60 per cent of all research defined as ‘world-leading’ or ‘internationally excellent’. Research Fortnight analysis of RAE 2008 ranks the University 7th in the UK by research power. In 27 subject areas, the University features in the UK Top Ten, with 14 of those in the Top Five.
The University provides innovative and top quality teaching, undertakes world-changing research, and attracts talented staff and students from 150 nations. Described by The Times as Britain's “only truly global university”, it has invested continuously in award-winning campuses in the United Kingdom, China and Malaysia. Twice since 2003 its research and teaching academics have won Nobel Prizes. The University has won the Queen's Award for Enterprise in both 2006 (International Trade) and 2007 (Innovation — School of Pharmacy), and was named ‘Entrepreneurial University of the Year’ at the Times Higher Education Awards 2008.
Nottingham was designated as a Science City in 2005 in recognition of its rich scientific heritage, industrial base and role as a leading research centre. Nottingham has since embarked on a wide range of business, property, knowledge transfer and educational initiatives (www.science-city.co.uk) in order to build on its growing reputation as an international centre of scientific excellence. The University of Nottingham is a partner in Nottingham: the Science City.
For more information, please click here
Contacts:
Dr Matt Clark
+44 (0)115 951 5536
Lindsay Brooke
Media Relations Manager
+44 (0)115 951 5751
Location: King's Meadow Campus
Copyright © University of Nottingham
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
NEMS
IEDM - CEA-Leti Will Present 11 Papers and Host Workshop on Disruptive Technologies for Data Management November 7th, 2018
UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018
Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018
One string to rule them all April 17th, 2018
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
MEMS
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||